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SYNOPSIS

The main thrust of the argument of this thesis is to show the possibility of artic-

ulating a method of construction or of synthesis—as against the most common method of

analysis or division—which has always been (so we shall argue) a necessary component of

scientific theorization. This method will be shown to be based on a fundamental synthetic

logical relation of thought, that we shall call inversion—to be understood as a species of log-

ical opposition, and as one of the basic monadic logical operators. Thus the major objective

of this thesis is to

This thesis can be viewed as a response to Larry Laudan’s challenge, which is based

on the claim that “the case has yet to be made that the rules governing the techniques whereby

theories are invented (if any such rules there be) are the sorts of things that philosophers

should claim any interest in or competence at.” The challenge itself would be to show that the

logic of discovery (if at all formulatable) performs the epistemological role of the justification

of scientific theories. We propose to meet this challenge head on: a) by suggesting precisely

how such a logic would be formulated; b) by demonstrating its epistemological relevance (in

the context of justification) and c) by showing that a) and b) can be carried out without

sacrificing the fallibilist view of scientific knowledge.

OBJECTIVES: We have set three successive objectives: one general, one specific,

and one sub-specific, each one related to the other in that very order.

(A) The general objective is to indicate the clear possibility of renovating the traditional

analytico-synthetic epistemology. By realizing this objective, we attempt to widen the

scope of scientific reason or rationality, which for some time now has perniciously been

dominated by pure analytic reason alone. In order to achieve this end we need to show

specifically that there exists the possibility of articulating a synthetic (constructive)

logic/reason, which has been considered by most mainstream thinkers either as not

articulatable, or simply non-existent.

(B) The second (specific) task is to respond to the challenge of Larry Laudan by demonstrat-

ing the possibility of an epistemologically significant generativism. In this context we

will argue that this generativism, which is our suggested alternative, and the simplified

structuralist and semantic view of scientific theories, mutually reinforce each other to

form a single coherent foundation for the renovated analytico-synthetic methodological

framework.
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(C) The third (sub-specific) objective, accordingly, is to show the possibility of articulating

a synthetic logic that could guide us in understanding the process of theorization. This

is realized by proposing the foundations for developing a logic of inversion, which repre-

sents the pattern of synthetic reason in the process of constructing scientific definitions.

STRUCTURE OF THE ARGUMENT: The dissertation is divided into three parts. In

the Part-I we present a historical introduction to the problem. Parts II and III, are designed

to meet the specific objectives (B) and (C). Finally we will attend to the general objec-

tive (A) towards the end of Part-III—moving from the specific to the general. In the first

part we present a quasi-historico-philosophical narrative, which substantiates the observa-

tion that ever since its inception traditional epistemology, despite being analytico-synthetic,

lacked certain necessary elements of analysis for purposes of characterizing some, especially

the constructive, aspects of scientific knowledge—giving rise to pure consequentialism. A

thematic study of the origin of epistemology and method in the hands of the ancient trio

Socrates, Plato and Aristotle is presented. This is then contrasted with the development of

the mathematico-experimental method, which is necessitated by the needs of new objects of

scientific knowledge, by the modern trio Galileo, Descartes and Newton. The factors that

eventually gave rise to the hypothetico-deductive methodology and its comrade-in-arms fal-

sificationism, are discussed. It is observed that accounting for the highly theoretical and

mathematical nature of the modern scientific knowledge eventually became one of the central

problems of epistemology. It is argued that the lack of understanding of how we arrive at

the highly theoretical and mathematical aspects of scientific knowledge has given rise to pure

consequentialism.

In the second part we critically review the arguments against a discourse of dis-

covery in epistemology, which culminated in Laudan’s challenge (referred to above). The

attempts made by Thomas Nickles and others to defend the discovery program are critically

assessed. It is observed that Nickles’ arguments to save the program, despite being the most

comprehensive of those available, are deficient, because of a lack of an alternative genera-

tivist framework. We then work out a generativist framework based on a distinction between

the epistemic values attributable to mathematical structures and models, such as closure,

invariance, and symmetry in the context of generation, on the one hand, and those of truth

and falsity attributable to scientific assertions in the context of application on the other. In

this context we propose a simplification of the non-statement view of W. Stegmüller and the

semantic approach defended by F. Suppe, and Bas van Fraassen.

In the rest of Part-II, we present the essentials of the idea of inversion, which is
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the heart of the matter of the thesis. The presentation starts by making certain conceptual

distinctions such as between: negation and inversion; one-over-many and one-to-one relations;

predicate and proportion based identities; definite and inverse definite descriptions; entities

and dimensions; and between the taxonomic and inverse systematization. These distinctions

are made in order to make the foundation of the framework explicit, enabling the reader to

anticipate possible developments.

We then outline the development of number theory as a known example where

inverse reasoning has played a necessary role. This is followed by suggesting a similar pattern

of analysis for the structure and semantics of definitions of dimensional elements (measurable

parameters)—extending the idea from the known case of number theory to the unknown

cases of physical theories. These definitions, it is suggested, are to be interpreted as ‘complex

predicates’ that describe ‘physical systems’. They may be viewed as semantic structures or

unsaturated propositions, which are not by themselves either true or false, but will have

epistemically desirable values, such as closure, invariance, and symmetry. These definitions

in their own right and irrespective of their applicability, are justifiable pieces of knowledge,

not only because of the values they possess but also because they developed from terra

cognita. It is then shown that the two views, the generativism of scientific definitions and the

simplified semantic view of scientific theories, mutually reinforce each other to form a single

coherent foundation for the proposed analytico-synthetic framework. It is further argued that

the various meta-theoretical predicates, such as closure, invariance, relativity and symmetry,

are based on inversion, in the sense that, inversion is a necessary (though not a sufficient)

condition for their emergence. Finally, it is also argued that inversion makes measurement

and mathematization possible, explaining the epistemic transformation from qualitative to

quantitative science. In the course of the discussion the affinities of the proposed framework

with the views of H. Weyl, E. Wigner, Bas van Fraassen, F. Suppe, W. Stegmüller, J. Piaget

etc., among others, are presented.

In Part-III, we substantiate the major claims of the thesis in the form of detailed case

studies. We start with an account of how proto-scientific knowledge emerged out of a ‘soup’

of opposites prevalent in ancient Greece. The metaphysical views from Thales to Plato suffer

from being highly global (non-paradigmatic). It is observed that the shift from global world

views to local (paradigmatic) problem oriented science took place with Aristotle. A study of

Aristotle’s Physics and De Caelo, shows that most questions later dealt with by Galileo in

the 17th century were posed by Aristotle, though his solutions were all ‘wrong’. [Aristotle]’s

Problems of Mechanics, was the real turning-point towards mathematical physics addressing
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certain local problems in statics, such as that of the lever, balance, pulleys, and certain

other geometrical problems. It was followed by Archimedes’ contributions to statics and

hydrostatics. We have sought to demonstrate that in these developments inversion played a

necessary role, in the sense that without this seminal notion the genesis of scientific knowledge

would have been impossible.

We then present a detailed reconstruction of Galileo’s discoveries regarding the

problem of motion, based on his works De Motu and The Two New Sciences, which show

beyond doubt that the development of modern physics has been made possible by applying the

known knowledge of the balance—a representative example of a theoretical structure based

on inverse reason—to the unknown case of motion. Galileo’s study shows how he successively

reduced the motion of bodies in natural fall, projectile motion, on inclined planes, and the

motion of the pendulum, to that of the balance. We trace the steps by which Galileo gradually

‘bends’ his attention from the vertical component to the horizontal component, employing

the above mentioned analogies, ultimately leading to his greatest discovery, the relativity of

motion and the composition of the two components, among other discoveries such as the law

of free fall and the law of inertia. This case study also demonstrates how the use of inverse

reasoning by Galileo can explain the conceptual change from Aristotelian to the modern

physics. Most concepts of modern dynamics, like mass, force, momentum, energy, etc., show

their presence in this context, demonstrating the discovery potential of inversion.

Another case study is presented to illustrate how reversibility, invertibility of chem-

ical processes, have played a necessary role in the discovery of chemical elements. This study

extends from the Stahlians to Lavoisier, explaining the role of inverse reason in the overthrow

of phlogiston chemistry.

The ideas of equilibrium and homeostasis, which are also based on inversely related

processes, have been shown to have played a significant role in different branches, such as

population genetics, general physiological models in biology, further corroborating the role of

inversion.

Having demonstrated the omnipresence of inverse thinking in various contexts, we

conclude by proposing that inversion should undoubtedly be an additional and necessary

parameter for a philosophical study of scientific knowledge in its genesis, development and its

structure. We end the dissertation with an outline of the analytico-synthetic epistemological

framework to replace pure consequentialist epistemology.



PREFACE

This thesis is based on the following historico-philosophical observation regarding

the failure of philosophers of science in understanding the methods of generating scientific

knowledge. Though traditionally philosophers have addressed the problem of how we arrive

at scientific knowledge—which for them is infallible—they could not achieve anything that

can be called success. Towards the end of the last century a significant turn took place in

epistemology and philosophy of science leading to fallibilism. Emergence of fallibilism has led

to the abandonment of one of the fundamental problems of a traditional epistemologist, which

is the problem of how we arrive at (true) scientific knowledge. Though we agree that we are

in possession of no method that can generate true scientific knowledge, we think that we can

devise methods that can generate meaningful scientific concepts. Therefore it occurred to us

that there is no need for a complete abandonment of traditional generativist epistemology.

The initial problem of the thesis was then formulated to explore the possibilities of renovating

generativism. Thus when the work began, the problem chosen was to argue out a case for a

version of analytico-synthetic generativist methodology.

The history of philosophy has strong evidence against the role of induction in the

generation of scientific concepts: for it was realized that scientific concepts are much more

than what can be obtained by means of induction. Convinced that induction cannot generate

scientific concepts, we went on to explore the possibility of other methods such as the method

of taxonomy, which surely has played a decisive role in the discovery of scientific kinds (natural

kinds). If the idea of inversion did not eventually occur to us, the thesis would have been on

“The Role of Taxonomy in the Discovery of Natural Kinds: Towards an Analytico-Synthetic

Approach”.

Eventually we realized that there are two main aspects to the problem of generating

scientific knowledge. One of them is the problem of devising the methods that lead to

proliferation of scientific kinds, and the other is the problem of devising methods that lead

to unification and abstraction of theoretical (scientific) concepts. The problems that we have

encountered in articulating this distinction are responsible for the eventual emergence of the

idea of inversion. The title of the thesis at that point of time would have been “The Two

Faces of Science: Inversion and Taxonomy”. Inversion is intended to be the method of dealing

with invariance, and taxonomy with variety . But the vitality and the force of the new idea

naturally took all our attention. The present thesis is therefore about only one of the aspects
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Chapter 1

Origin of Epistemology and

Scientific Method

Two fundamental questions concerned philosophers ever since the inception of epis-

temology. (a) How do we arrive at knowledge? And (b) How do we know that the arrived

knowledge is true? These questions can also be put in a different manner: (a’) What factors

make the genesis of knowledge possible? (b’) What factors make knowledge true? Retro-

spectively we may say, following Reichenbach’s famous distinction, that the two questions

relate to the context of discovery and the context of justification respectively.1 Any discus-

sion regarding the context of genesis of scientific knowledge in the contemporary discourse is

questioned on the ground that epistemology has nothing to do with the questions of genesis

or origin of ideas. Or even if the questions are rated legitimate for epistemology, no formal

pattern of genesis is believed to be possible.

However, as we have just stated, such has not been the case since the inception of

epistemology. Philosophers have attempted to answer the question of origin of knowledge,

ever since knowledge making or seeking has been realized as a component of human nature,

as if it is natural for them to do so. Why did this become a natural question to start with?

And why is this not so with us in this century, when it is no longer considered that a theory of

discovery/invention would naturally form a part of epistemology? Today some philosophers,

who find it interesting to address this question, have been addressing this question only by

way of defense, with hesitation and with little confidence. So they have to attend in the

first place to a meta-philosophical problem of legitimizing the problem, and then attend to

the relatively first-order philosophical problem of searching for an order in the context of

1The dichotomy has been questioned by some philosophers on various grounds. These details will be
discussed in Chapter 4.
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discovery.

For traditional epistemology the question of finding the method/s of arriving at

knowledge has been a necessary problem, because justification of knowledge was thought to

be partly, or completely dependent on the basis of generation, i.e., the problem of genesis

and justification were not thought to be independent. On the other hand, for the majority of

the contemporary epistemologists the epistemological problem consists in finding methods, if

any, of justifying knowledge by deducing specific truthful consequences from general abstract

laws or theories. We will call, following the terminology of Larry Laudan (1980), the former

position generativism, and the latter consequentialism.

How did this philosophical transformation from generativism to consequentialism

take place? To give a detailed and critical explanation to this interesting transformation

in epistemology would in itself require a separate work. We are not attempting to provide

such an account in this work. However, some explanatory observations pertaining to the

transformation will be presented which would form a background to this work.

This part is written with the view that the problem of this work can be best stated

if we understand the situation or the historical circumstance of its origin, i.e. the context

of the genesis of epistemology and scientific method, for it is our diagnosis that mainstream

epistemology ever since its inception lacked certain necessary elements of analysis for char-

acterizing scientific knowledge. We assume that the problems of epistemology can be better

understood by knowing some of the necessary conditions that made a theory of knowledge

possible. Especially, from the point of view of the present work, it is necessary to seek answers

to these questions: Why, in the first place, did the early philosophers felt that there should be

a method of arriving at knowledge? Why did epistemology, as a theory of knowledge, come

into being? With these questions in mind if we look back at the history of Greek thought, we

may possibly come to know the genealogy of the problem at hand, the pitfalls of the various

answers given, and the direction in which to seek the answer today.

We will be presenting this as an account of the genesis and dynamics of thematic-

pairs. The following material, let us make it clear, may not contain any new historical ‘facts’

of philosophy that most of us are unaware of. What we have done is to realign the ‘substance’

in a new form, which being a ‘rational reconstruction’, is intended to form an argument in

itself. Though the thesis is an argument in favor of the analytico-synthetic epistemology, it

is not however written in an argumentative style. Rather, we have adopted a different kind

of style which may be described as that of a quasi-historico-philosophical narrative.

It is quasi-historical because the character of our research is not similar to that of
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a historian. And at the same time we cannot say that the work has nothing to do with the

history of ideas. It is quasi-philosophical because it is not presented in the form of a rigorous

argument, rather it is presented in the form of an extended argument with internal coherence,

which emanates from the alternative framework that we have in mind. This framework will be

identified by comparative characterization, and in this sense we frequently attend to various

epistemologies by comparing them with ours. We have called it a narrative because the

objective is to tell of or explicate, a possible alternate framework, and reformulate some of

the problems of epistemology and philosophy of science from this new point of view. It is also

a narrative because there is reconstruction involved in our attempt to retell the otherwise

familiar material.

The method of organizing that we have adopted consists basically in the manner in

which the presuppositions of a given thought are analyzed into antinomies or thematic-pairs.

Some examples of such thematic-pairs are: reality and appearance, variable and invariable,

Being and Becoming, simple and complex, universals and particulars, genus and species,

analysis and synthesis etc. We will see that these thematic-pairs by their intrinsic anchorage

in a tradition—being presuppository in nature—function as regulatory constraints, control-

ling the thinking process of the tradition. Thus they not only make some line of thinking

possible, but at the same time they put a limit on that thinking, on that very basis. It

is due to the possibility of knowing both the necessary conditions as well as limitations of

epistemology, that we intend to narrate the story of early stages of epistemology in a form

based on thematic-pairs and their dynamics. The semantics of theoretical order, we think,

can best be understood by this method of thematic analysis based on opposites of various

kinds.

1.1 The Genesis of Universals and Epistemology

If there was ever a period in the history of ideas that was fruitful in terms of variety

and creativity, it certainly was the period from the 7th century BC to the 4th century BC. It

was during this period that a variety of early conceptions of nature were proposed starting

with Thales and ending with Plato. The conceptions of nature will be presented separately

in Chapter-7, because the neglected thematic-pairs based on inversion have been playing a

central role in their development. Since our objective is also to show the inherent limitation

of mainstream epistemology, by way of looking at the context of its genesis, for the present

we shall limit our presentation to the developments pertaining to early conceptions about

knowledge.
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Earlier to the Sophists, who went on to develop conceptions about human nature as

well, there are certain conceptions ‘about’ knowledge, which are based on the thematic-pair,

appearance and reality , an early precursor of another modern thematic-pair, primary and

secondary qualities. We may recall that the early theoreticians of nature, often described as

the physiologues, presumed that the apparent world is confusing, complex, everchanging (in

constant flux), and so on, and that the real world is ordered, simple, and has a permanent

form. The thematic-pairs Becoming and Being are thus connected to the apparent and the

real. This is possibly the first attempt to understand the underlying reality in a manner

which is different from the mythological and theological modes of knowing.

This distinction between the ‘physiological’ mode on the one hand and the mytho-

logical and theological modes on the other is not intended to show that the former is superior

to the latter modes of knowing. With the assumption that mainstream epistemology has not

much to offer on mythological and theological modes of knowing, and because mainstream

epistemology at least claims to be about ‘scientific knowledge’, we concentrate only on the

physiological mode to begin with. We intend to demonstrate that mainstream epistemology

could not give a satisfactory and complete account of scientific knowledge because it has

not been able to delineate one of the essential and basic components of scientific thinking.

Another of our assumptions is that we consider the physiological mode as a precursor to the

scientific mode of knowing.

That there is something beyond what is given to us in experience has been generally

explained on the basis that a large number of events that we experience have no visible causes,

given the assumption that we have a natural tendency to search for causes. In order to bring

in security, closure and symmetry, the human mind has created many invisible ‘theoretical’

(it may be appropriate to say mythological or theological) entities, including ghosts, demons,

gods, etc. The invisible has somehow taken the ‘primary’ level of reality, while the visible

has become the ‘secondary’ level of appearance. These presuppository themes such as hidden

and visible, apparent and real, primary and secondary, appear to have animated one of the

basic modes of knowing, namely the explanatory mode, which is at some level of generality

common to all the modes of knowing. Thus some of the first thematic-pairs that started

moulding our thinking can be stated to be the visible and the invisible, and the apparent and

the real.

In the first phase of the genesis of scientific knowledge, characterized by a manner

of theorizing at a global level, various proposals have been made regarding what is that

underlying invisible reality . We can easily see that the expression ‘underlying invisible reality’
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is a composition of the thematic-pairs mentioned above. As mentioned already except towards

the end of this phase, proper epistemological questions were not a central concern. Thematic

analysis of ‘theories’ about nature are presented in Chapter 7, where the role of inversion in

the genesis of scientific knowledge is elaborated. In what follows we shall begin narrating the

crucial moments in the genesis of epistemology.

It is generally noted by historians that Greek philosophy begins with an inquiry

into the objective world and then gradually turns its attention to man himself, leading to the

study of the human mind, human conduct, logic, knowledge, ethics, psychology, politics, and

poetics. Such a turn took place due to the Sophists, who shifted the attention of thinkers

from the problems of nature to the problems of human knowledge and conduct. Before them,

there had not been any attempt to question the possibility of knowledge. It is assumed that

men can know and rightfully ‘theorize’ about the world.

An antithesis to this trend was provided by the Sophists, who thought that cosmo-

logical and metaphysical speculations are futile. Having seen the diversity of opinions found

among the Greek naturalists, they concluded that this was due to the limitations of human

thought and abilities. According to the Sophists our opinions about nature would necessar-

ily be diverse, paradoxical, and without any interpersonal agreement. The picture given by

them appears to be true because, different thinkers chose different ‘things’ as the underlying

invisible reality. As is well known, while some considered water as the underlying principle,

some considered air, and some others fire. A few others ‘created’ highly abstract things like

apeiron, undifferentiated substance, and proposed a mechanism of creating the rest of the

substances from them. Which among these ‘theories’ is the best? It is almost impossible to

answer this question because each of them is internally coherent, and ultimately it is just

a matter of one’s choice. The theories are proposed at such a highly global level that it is

difficult to judge or verify them. Karl Popper would describe these theories as unfalsifiable,

therefore nonscientific, though meaningful.2 The Sophist’s criticism, however, was not based

on this modern notion of falsifiability, but rather on the impossibility of solving the riddle of

the universe. It is impossible because knowledge depends upon the knower. What appears

to be true for one need not be true for the other. There is no objective truth, only subjective

truth. They preached that “man, collectively, is the new corporate entity which replaces

the cosmos; it provides its own measures.”3 Thus, man is the measure of all things—Homo

mensura. They repudiated the earlier thinkers in favor of common sense judgments of the

individual. This, to our understanding, is the initial problem of knowledge, challenging the

2Cf. Popper 1963, Conjectures and Refutations: The Growth of Scientific Knowledge, Ch-11, p. 253ff.
3Giorgio de Santillana 1961, The Origins of Scientific Thought: From Anaximander to Proclus, p. 172.
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efforts of knowledge seekers in an uncritical manner.

We think that this challenge remains only partially resolved, from the philosophical

point of view, by Socrates, Plato and Aristotle. However partial their solution may be, from

the point of view of the positive contributions they have made towards the birth of scientific

knowledge, their success consists in creating the initial categories into which a precursor of

scientific knowledge in the form of systematic knowledge started pouring in. We will critically

elaborate the attempts made by these great thinkers starting with Socrates.

The genesis of mainstream epistemology can be narrated by first looking at the

pattern of the Socratic method used to generate knowledge of the universals. The Socratic

method, which consists in asking questions in feigned ignorance and refuting all answers is

in fact identical with the Sophistic method of argument intended to disclose contradictions

in the opponent’s statements or views. But in contrast with the Sophists who seek to prove

that knowledge is impossible in principle, Socrates only comes out against false knowledge.

His goal is to expose false claims to wisdom and lay bare human ignorance.

It is well known that Socrates’ attention was not directed towards knowing the

physical world, because he thought that our abilities to know it are limited. The subject of

his inquiry is human nature. A host of questions raised by Socrates in the early Dialogues

of Plato, which are about virtue, courage, temperance, etc., give us this indication. However

these inquiries have an inherent pattern that was explicitly identified and defined by Plato

in his later Dialogues, i.e., from Theaetetus onwards.

From a study of the early Dialogues of Plato, we now present an account of how the

discovery of the thematic-pair universals and particulars took place.4

The discussion will be conducted, as mentioned above, as a part of the account of

his method, usually called the Socratic method, for the distinction between universals and

particulars become operative in the method. The central concerns of a philosopher can best

be understood by examining the questions raised by them. Here we make use of a study

by Santas on the type of questions raised in Plato’s Dialogues, which in turn is based on

the study by Belnap on the logic of questions. It has been demonstrated by Santas that

in Plato’s Dialogues mainly two kinds of questions are asked, namely, which-questions and

whether-questions.5

How is the classification of questions relevant for our purpose? The answer is that

4It is assumed that the early Dialogues of Plato describes the Socratic position and the later ones his
own. Thus when we use the expression ‘Socratic method’ it is the method enunciated in his early Dialogues
apparently practiced by Socrates, to which we refer. The expression ‘Plato’s dialectic’ refers to the method
formulated in his later Dialogues.

5Santas 1979, Socrates: Philosophy in Plato’s Early Dialogues pp. 72-73.
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it enables us to understand the underlying expectations, and motivations of Socrates while

asking questions. These expectations clearly reveal that he distinguished between universals

and particulars. The following account on which-questions indicates how one can ‘define’ or

fix a universal, and the subsequent account on whether-questions explicates what is peculiar

to the Socratic method, which aims at an ultimately clearer understanding of universals

through the imperfect knowledge of particulars.

Which-questions are non-dialectical and whether-questions are dialectical. This di-

vision is made on the basis of whether the alternatives provided by the question are infinite

or finite and also on the basis of the manner of presenting the alternatives. It must immedi-

ately be made clear that this division is not merely made on the basis of which questioning

expression occurs in the question, but, as we shall see, solely on the basis of the alterna-

tives suggested by the question—whether the alternatives are infinite or finite. This will

become clearer from the examples given below. Examples of whether-questions will be given

later in an extended discussion on the Socratic method (§1.2 page 18), while examples of

which-questions shall be discussed here.

Which-questions allow great latitude to the respondent, therefore these are also

called ‘infinite’ questions.6 According to Belnap which-questions and whether-questions are

differentiated on the basis of the manner of presenting the alternatives. In a whether-question

the alternatives are explicitly mentioned, while in a which-question the alternatives are de-

scribed by reference to some condition and an appropriate set of names or terms. To arrive

at any answer the conditions are to be provided, otherwise it would not be clear to the

respondent from what kind or range of alternatives to choose.

In the Dialogues of Plato which-questions, in relation to whether-questions are not

numerous. But it is with a which-question that each of his Dialogue is initiated. The most

famous kind of questions raised by Socrates are which-questions. For example, What is knowl-

edge? (Theaetetus) What is virtue? (Meno) What is courage? (Laches) What is temperance?

(Charmides) What is justice? (The Republic) What is beauty? (Hippias Major).

These questions are of the form ‘What is X ?’. We could see that no further con-

ditions are given in the question, unlike in a typical example of a which-question ‘What is

the smallest prime number greater than 45?’, where ‘greater than 45’ provides a condition.

They have only a main term. But as the Dialogue proceeds some conditions are introduced

subsequently by Socrates, in order to delimit the scope of the question and also to clear the

misunderstandings of the respondents.

6Which-questions may also be called ‘what-questions’, however we shall use the term ‘which-question’ since
it is already in use. Cf. Belnap 1963, p. 13, and pp. 37–8.
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An analysis of the which-question and its complete form will throw great light on

the objective of the Dialogues, which is to arrive at a definition of an idea. A preliminary

characterization of universals can be obtained from a longer version of a which-question,

which looks like a typical which-question with generalized conditions. According to Santas

the longer version of the question can be stated as follows:

What is the kind (characteristic, property) which (a) is the same (common) in all
F things, and (b) is that by reason of which all F things are F, and (c) is that by
which F things do not differ, and (d) is that which in all F things one calls ‘the
F’?7

Here (a) and (c) characterize F on the basis of similarity and difference, while (b) and (d)

give reasons for calling some thing/s F. The main part of each Dialogue starts with a which-

question, which defines the scope of the question, and since each Dialogue generally addresses

itself entirely to that very question it defines also the scope of the entire Dialogue. It is not

the terms, like ‘knowledge’, ‘beauty’, or ‘virtue’, that appear in the questions which do this,

but the conditions (a), (b), (c), and (d) of the longer version of the question form quoted

above. These conditions from (a) to (d) clearly tell us what Socrates is looking for. These

conditions are just those criteria which define the universals. In the language of Plato they

define the Forms, whereas particulars are represented in those conditions as ‘F things’. If

the form of the question is any indication to the thematic-pair guiding the Socratic method

in the Dialogues, it is clearly the thematic-pair universal and particular.

This pair further presupposes certain familiar ideas of similarity and difference, one

and many. Things around us have certain similar qualities, and one quality can characterize

many things. The one is an instance of a universal and the many are called particulars.

This pair thus presupposes the ideas of similarity and difference. However, certain other

significant aspects are involved, but are not clear from the question form explicated above.

One of them is the involvement of a logical operation called negation. The question form

explicated above however does not capture this important logical relation. Through the

mention of difference, as it occurs in one of the conditions above, one might say, the relation

is captured. However picking out examples of a type is most often not a trivial job. Therefore

we think it appropriate to further explicate the conditions (a) to (d) as follows: What is the

kind (characteristic, property) which (a) is the same (common) in all F things and not the

same in non-F things, and (b) is that by reason of which all F things are F, and all non-F

things are non-F, and (c) is that by which F things do not differ, and is that by which F-things

7Santas 1979, op.cit., p. 83.
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and non-F things differ, and (d) is that which in all F things, but not in any non-F thing,

one calls ‘the F’?

This brings out the essential logical relation that is involved in relating a set of

tokens to a type, for similarity cannot be captured independently of difference. It is rather

well known that Socrates displays a tendency to know the examples of some kind , and the

class of objects is delimited by means of separating out those objects that do not belong

to that kind. We conclude therefore that negation is the logical basis of the thematic-pair

universal and particular.

This is how, we can best reconstruct the reasons why Socrates attempts to capture

the essence of a property by means of both positive and negative examples. Of the various

kinds of thematic-pairs this pair of universals and particulars is unique in many ways. While

negation is certainly one of the unique ‘properties’ of the pair there are few other ways of

capturing the uniqueness.

Another significant manner in which the uniqueness of the thematic-pair can be

highlighted is by distinguishing the two levels to which the elements of the pair belong.

Traditionally speaking universals belong to the level of Being, and particulars to the level

of Becoming. Considering the type-token relation of the elements, we can say, in rather

non-traditional terms, that universals belong to the conceptual realm, and particulars to

the object-realm. It can also be said that the former belongs to the intensional level and

the latter to the extensional level. The significance of this characterization gets enhanced

specially in relation to another fundamental thematic-pair of epistemology, genus and species.

After introducing the context in which the notions genus and species enter into epistemology

we will be highlighting this characterization once again.

Let us now consider the significance of these developments in the context of the

Sophists’ challenge. Knowledge of particulars is impossible, since there can not be knowledge

of things that change. Socrates and Plato agree with the Sophists on this point. But, then

they would say the knowledge of universals, i.e. our understanding of the nature and essence

of qualities of things, is unchanging, therefore we can know universals.

This development is interesting, because new objects of knowledge, namely univer-

sals or Forms are defined. To the best of our knowledge the contribution of Socrates and

Plato to epistemology mainly consists precisely in the discovery of universals. To understand

the nature of this move let us look at its character.

The Sophists demonstrated that there is change in the object as well as the subject

of knowledge. How is then knowledge of the world possible? One possible way of finding
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a solution to the problem is to show that knowledge is possible despite the variation in-

volved on the part of the subject as well as the object. One way out is to show that the

variation in knowledge is due to variation in the objects (Becoming), while invariance in

knowledge, if possible can be due to the invariant object (Being). This demands a further

distinction within knowledge into its variable component and invariable component, and also

a corresponding division into the resulting kinds of knowledge. Socrates’ solution consists in

making precisely this kind of move. The variable component of knowledge is named opinion

or doxacorresponding to the knowledge of the variable particulars, and the invariable com-

ponent, episteme, corresponds to the knowledge of the invariable universals. Thus two forms

of knowledge have been distinguished corresponding to its two objects. Socrates and Plato

concede the point made by the Sophists only with respect to the opinion of particulars, and

not with respect to the episteme of universals. This is how we think Socrates tried to meet

the challenge of the Sophists’.

The reconciliation could have been impossible had Socrates not ‘discovered’ the

need for the creation of an idealized world of Forms, and we will see how this step of ideal-

ization is necessary even for scientific knowledge. We will also see below that without this

move the transformation of Pythagorean mathematics into Euclidean mathematics would be

impossible. Details of the precise role of idealization will be discussed later.

Not only that this distinction between objects of knowledge on the one hand and

the distinction between common-sense (opinion) and episteme (systematized knowledge) on

the other hand, was found essential to the development of science, but most of mainstream

epistemology depends heavily upon this distinction.

Is this the only possible way of solving the riddle posed by the Sophists? Aren’t

there other alternatives? We think that there exists at least one more clear alternative.

The other alternative is to suppose that variance or change at the level of objects

is real , not apparent. But this real variance has an order or a pattern in it, such that

that order of variance can be called invariant. Even if the objects of knowledge are of the

changing kind, knowledge is possible, because there is a possibility of finding invariance in

the changing objects of knowledge. This latter possibility, it can be seen, is significantly

different from the previous one, where the invariance is ascribed to an unchanging object of

knowledge, universals. The objects of knowledge are not assumed to be invariant. Instead it

is assumed that the variance has an invariant structure. There may be other alternatives. But

for our purposes distinguishing these two possible answers is sufficient. The epistemological

framework that we are going to elaborate below tries to address the epistemological question
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of the possibility of knowledge based on this second possibility. We claim that mainstream

epistemology, since it is based on the distinction of universals and particulars, can not capture

the essence of changing objects.

Though this alternative also depends on abstracting or idealizing a Form out of

the given, this Form is different in nature from Forms based on the thematic-pair universals

and particulars. We would be basing this Form upon another basic logical relation, that

of inversion, and not negation. The attempt of the thesis is to work out a basis for this

alternative.

1.2 The Method of Socrates

Once universals are taken to be the objects of knowledge new problems crop up.

We have just seen that the thematic-pair universals and particulars was conceptualized in

order to distinguish variable and invariable elements of knowledge. The notion of universals is

not immediately given, for an understanding of this requires a meta-level abstraction. Since

it is held by Socrates and Plato that true knowledge is the knowledge of universals, which

is not easily (‘naturally’) accessible, the acquisition of the knowledge of universals requires

deliberate and conscious effort. Since universals are not like the familiar objects which have

spatial and temporal properties, they cannot be ‘looked’ at directly.

This problem is very acutely recognized by both Socrates and Plato. Their answer

briefly is that the knowledge of universals can be gained only by conscious effort, and the

effort consists of an ordered search towards reaching universals. Knowledge of universals like

scientific knowledge cannot be obtained without some form of training. Indeed unless some

sort of difficulty is involved in the acquisition of such knowledge the question of method does

not arise. For it makes little sense to conceive of a method when the objects of knowledge

are immediately and naturally grasped. With these comments about the need for a method,

let us look at the essential aspects of the Socratic method.

Two stages can be identified in the Socratic method. In the first stage, the questioner

elicits from the respondent what he thinks he knows by asking a question. His answers

are then taken as suggestions or hypotheses, which are criticized by deducing consequences

conflicting with other opinions the respondent holds by a series of questions and answers.

The second stage proceeds by the same method by considering fresh suggestions, criticized

and amended until it reaches an end, which is the correct definition of the form.8

8Cornford 1935, Plato’s Theory of Knowledge: The Theaetetus and the Sophist of Plato, p. 184.
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In this method, the role of a which-question is mainly to elicit from the respondent

what he thinks he knows. The conditions that form part of the question, as elaborated above,

play the actual role of regulating the thinking of the respondent toward understanding the

meaning of an idea. To have an understanding of an idea is to be able to explicitly define

it. A notable feature of these conditions is that they are ‘known’ to the respondent, in the

sense that he understands the meaning of the conditions. This is the most significant and

essential feature common to most of the methods proposed for arriving at knowledge, i.e.,

moving from the known (familiar) to the unknown (unfamiliar). Not surprisingly, it is also

an essential element of any pedagogy.

Coming now to the other type of questions, i.e. the whether-questions or the di-

alectical questions, they are those for which generally either ‘yes’ or ‘no’ are the appropriate

answers. Usually the alternatives presented in these questions are a proposition and its nega-

tion, or they state explicitly a finite number of alternatives and make some request to the

respondent concerning these alternatives. In Plato’s Dialogues these constitute the majority

of Socrates’ questions. Some examples of dialectical or whether-questions raised by Socrates

are: “Don’t you see that I am looking for that which is the same in all such things?”9 “Do

you suppose that anyone can know that something is an element (part) of virtue when he does

not know virtue?”10 “Do you consider that there is one health for a man, and another for a

woman? Or, wherever we find health, is it the same nature (or kind) in all cases, whether in

a man or anyone else? ... Is it not so with size and strength also?”11

The role of whether-questions is to help the respondent to see for himself (a) how

some of his answers contradict his more secure beliefs and (b) to see the worth of certain

alternatives by demonstrating how the response fits with common beliefs. It is in the course

of raising whether-questions and answers, which constitute the major part of the Dialogue,

that definitive answers are arrived at.

It is well known that the Socratic method is dialectical. It can also be characterized

as inductivo-deductive for it has both the elements of induction and deduction.12 The method

is inductive in the sense that it lays emphasis on grasping the commonness of a given set of

particular opinions. It is deductive in the sense that the proposed commonness of a Form is

tested by drawing out its consequences, to see whether they ‘cohere’ with commonly accepted

9Meno 75.
10Meno 79.
11Meno 72. More examples of both kind of questions raised by Socrates are in Santas 1979, pp. 59–65.
12However Karl Popper would not accept this interpretation, for he characterizes the Socratic method as

hypothetico-deductive or as a method that follows conjectures and refutations. Cf. Popper 1963, Conjectures
and Refutations.
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beliefs. However from this, one should not jump to the erroneous conclusion that Socrates

characterized his method to be either inductive or deductive, for he never gave a meta-level

analysis of the method he practiced and preached. It was Aristotle who explicitly identifies

the two logical methods. We will come to this a little later.

The initial developments of epistemology thus consist in the discovery of universals,

and a method of arriving at them. The most important contribution of Socrates in this

context is the coordinate set of abstract thinking, universals and particulars, which continues

to regulate and structure philosophical reflection since then. The kind of amplification in

philosophical reflection that took place after Socrates is undoubtedly due to this coordinate

set. It is an instance of a fertile philosophical idea that is responsible for the proliferation of

other philosophical ideas. The most significant developments that result from this coordinate

took place in the hands of Plato and Aristotle.

1.3 Plato’s New Dialectic

Plato develops his edifice upon the foundation prepared by his teacher Socrates, and

one of the most important ‘brick’ in that foundation, as already stated, is the idea of universal

(and particular). Plato’s views about the questions ‘What can be or cannot be known?’ and

‘What are the criteria of knowability?’ are to a large extent similar to the views of Socrates.

Let us recall from the above discussion that to know, according to Socrates, is to be able

to give an explicit definition of the universal (Form). An ‘advancement’ over Socrates is

that Plato introduces a distinction between two kinds of Forms, simple and complex . There

are enough indications to believe that Plato, in the course of time, clearly made up his

mind about the need to further distinguish universals, for he thought that if the objective

of episteme is not only to arrive at universals but also to characterize them by definition, it

is necessary to show how one Form relates to another Form. And the notion of definition

requires that the definiendum be analyzed into simpler elements. His dialectic differs from his

teacher’s in this significant respect. Thus after Theaetetus, Plato’s attention turned from a

group of individuals (particulars) with its common Form (universals) to the relations between

Forms themselves, and specifically the relations between Forms that occur in the definition

of a Form.13 The method of arriving at the complex Form or genus and dividing it into its

ultimate simple Forms or species has been formulated in the new dialectic as the methods

of synthesis and analysis respectively. Thus to our understanding Plato’s dialectic is one of

the first comprehensive methods which has incorporated both the contexts of ‘discovery’ and

13Cornford 1935, op.cit. p. 185.
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‘justification’, and it is here that we see the rudiments of the method of analysis, which has

become part and parcel of scientific method ever since.

One may raise the question: ‘Why was the need felt for introducing the genus-species

distinction?’. The supposition, as mentioned above, is that knowledge is about Forms, and

true knowledge consists of a description or a characterization of Forms. The nature of this

characterization is such that to describe one Form we need other Forms, for only Forms

can combine to form Forms. Particulars can combine to give rise to another particular, but

can never become a Form. This is because, according to Plato universals and particulars

cannot belong to the same world. While particulars are accessible to the senses, universals

are accessible only to reason.

One may raise also the question ‘Why is Plato after definitions of Forms or uni-

versals alone, why not define particulars or individuals?’. We cannot raise the question of

defining particulars, Plato would answer, because they are, by nature, not definite or deter-

minable. A definition would use the term ‘is’ or ‘being’, which can only be applied to ‘Beings’

and not ‘Becomings’. Since ‘Becoming’ is associated with ‘being produced’, ‘perishing’, and

‘changing’, Plato refuses to use the term ‘is’ or ‘being’ to individuals which are ‘Becoming’.14

Thus we see that the epistemological thematic-pair universal and particular is related to the

corresponding ontological thematic-pair Being and Becoming. Since ‘Being’ is immutable,

definite etc., only universals which are Beings can be defined. For Plato, definability is a

criterion of knowability. Hence sensible particulars are not the object of episteme.

Here we shall briefly see how the changes mentioned above have come about leading

to the dialectic, a method of conceptual analysis.

Plato’s earlier conception about Forms is that they are indivisible ( atomon) and

simple. But he realises at the end of Theaetetus that the objects of knowledge (Forms) are

complex, for a definition is an analysis of a complex Form into simple Forms. Socrates, it

seems, is not aware of the contradiction between the views that universals be simple and

and that they be defined. But, Plato realising this, abandons the earlier view that Forms

are absolutely simple and indivisible. It is clear that this is a natural consequence of any

view which requires that the object of knowledge be defined. Since definition should not

be by enumeration of particulars, the Form to be defined and also the Forms with which it

should be defined are all to be found within the world of Forms, he has to make some of the

Forms simple and others complex.15 It follows from this that simple Forms cannot be defined,

14Gulley 1962, Plato’s Theory of Knowledge p. 80.
15Though it was found impossible by Plato, definition by enumeration specially in the context of learning,

is not uncommon. Ostensive definition, specially discussed in the context of a critique of empiricism by
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and hence cannot be known by the method. With this added distinction all the sufficient

conditions (sufficient concepts) are available for him to formulate the method of synthesis

and analysis. What constitutes the method of analysis? The method of analysis as described

by Socrates, (Plato’s mouthpiece) in Philebus is as follows:

[W]e . . . ought in every enquiry to begin by laying down one idea of that which is
the subject of enquiry; . . . Having found it, we may next proceed to look for two, if
there be two, or, if not, then for three or some other number, subdividing each of
these units, until at last the unity with which we began is seen not only to be one
and many and infinite, but also a definite number; the infinite must not be suffered
to approach the many until the entire number of the species intermediate between
unity and infinity has been discovered,then, and not till then, we may rest from
division, and without further troubling ourselves about the endless individuals
may allow them to drop into infinity.16

Thus, the proposed method of analysis starts with a single genus, which will be divided

systematically spreading downwards on the basis of differences (differentia) until an indivisible

species is obtained. Below the species are individual things (particulars) which partake of the

indivisible specific Forms. These individuals however are indefinable and are not the objects

of scientific knowledge (systematic ordering of Forms).17

But this does not mean that comprehension of particulars is not possible. Plato

does allow the possibility of having opinions about particulars, and what he does not allow

is the possibility of systematic knowledge of particulars. It may be pointed out that some

authors have rendered ‘episteme’ as scientific knowledge. But since there is a clear difference

between ‘scientific knowledge’ as used in the modern sense of the term and the Platonic sense,

we shall use the expression ‘systematic knowledge’ for Plato’s episteme.

The method of analysis, however, should be preceded by the method of synthesis or

collection. In the method of collection we take a synoptic view and bring widely scattered

things under one idea, so that one may make clear by definition whatever it is that one

wants to expound at the time, while the method of division allows us to be able to cut it

up at its natural joints, not hack at any part like an incompetent butcher.18 The method of

collection is a process of generalization and abstraction culminating in the recognition of a

single common Form.19 Thus it fixes the genus to be analyzed.

But no methodological or systematic procedure is possible in collection. The idea

Wittgenstein, belongs to this category. Cf. Wittgenstein 1953, Philosophical Investigations.
16Philebus 16.
17Cf. Cornford 1935, op.cit. pp. 186–87, and also Gulley 1962, op.cit. p. 110.
18Pheadrus 265.
19Gulley 1962, op.cit., p. 108.
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must be divined by an act of intuition for which no rules can be given.20 Then, why call it

method? We can still call it so, because this stage is said to be closely related to the method

of hypothesis and the Socratic method on the one hand and to the theory of recollection on

the other.21

Plato’s latter account in Republic clearly shows an element of the hypothetical nature

in the method of collection.

[U]sing the hypotheses not as first principles, but only as hypotheses—that is to
say, as steps and points of departure into a world which is above hypotheses, in
order that she [reason] may soar beyond them to the first principle of the whole;
and clinging to this and then to that which depends on this, by successive steps
she descends again without the aid of any sensible object, from ideas through
ideas, and in ideas she ends.22

Here we see not only the hypothetical nature of the method, we also see how it is linked with

the complementary method of analysis, which operates above all kinds of indefiniteness.

This in a way looks like a hypothetico-deductive schema of Popper. However, at

least two striking differences should be looked at. First of all Plato has a method of collec-

tion, which contains inductive elements of the Socratic method, while Popper goes to the

extreme by rejecting any possibility of the synthetic method. Popper’s arguments against

induction, along the lines of Hume, are rather well known. Second, Plato’s analysis is with

respect to Forms, and as the above quotation reveals, it starts and ends in ideas, while in

Popper’s hypothetico-deductive schema we have general and particular statements, where

particular statements are reports of sensory experience. Plato’s dialectic, as we have already

mentioned, has no such objective to describe the objects of perception given by sensory expe-

rience. Further Plato’s episteme is not Popper’s scientific knowledge. We think that Popper’s

epistemology is unique in the sense that it is an epistemology minus synthesis, though this

development has a history, while Plato’s is evidently analytico-synthetic despite lacunae.

It is worth noting that the method of analysis is clearly an original feature of Plato’s

dialectic and has no clear place in the Socratic method, for it was never discussed in the

earlier Dialogues. The only possible rudiment of the method of analysis in the Socratic

method is when, intermittently, while leaping towards the universals from particulars, there

is an attempt to see if the ‘leaps’ are proper by enumerative examination, to see whether

the consequences are contradictory to common belief. It is possible, therefore, to argue that

20Cornford 1935, op.cit., p. 187.
21Here we find that Plato’s position sounds like Karl Popper’s, however these positions are markedly different.

See the discussion below.
22Republic, 511.
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the Socratic method is a method of arriving at ideas (synthesis or discovery), which fixes

universals, and the method of analysis, which is ‘deductive’, is a method of confirmation or

justification. It ensures that the result of the former method is coherent (or true). Analysis

takes place purely within universals. This is possibly the beginning of conceptual analysis

and systematic knowledge, and also a step essential for the development of logic. In the

Republic Plato makes the point very clear that the method of analysis proceeds ‘without the

aid of any sensible object’ that it starts from ideas, through ideas and in ideas it ends. On

this point the two complementary methods on the one hand, and Plato’s dialectic and the

Socratic method on the other hand, differ.

What is the application of the method apart from the claim of gaining a clear

understanding of the world? The knowledge of the new dialectic will guide the progress of

actual discourse; it is the philosopher’s science of dividing correctly. An expert in dialectic

will not confuse one Form with another. In the Sophist the Stranger speaks about the utility

of the method as follows.

[H]e who can divide rightly is able to see clearly one form pervading a scattered
multitude, and many different forms contained under one higher form; and again,
one form knit together into a single whole and pervading many such wholes, and
many forms, existing only in separation and isolation. This is the knowledge of
classes which determines where they can have communion with one another and
where not.23

Here we see a glimpse of what Plato has in mind regarding the objective and the outcome of

episteme.

We shall see below that for understanding the nature and structure of scientific

knowledge, the notion of complex universal (“single form knit together into a single whole

and pervading many such wholes, and many forms”), is inevitable. We shall interpret a

scientific definition to be a complex predicate, ‘truly’ attributable only to an idea or ideal

system. According to the semantic view of theories, a version of which is being defended

in the thesis, modern scientific definitions are taken to be complex predicates or models

attributable to an idealized system. (Details are worked out in Chapter 5 and 6.)

From this point of view Plato’s contribution with regard to the detailed structure

of Forms, interrelating one with the other, can readily be seen as highly significant. However

we will base our analysis of non-Platonic (modern) scientific definitions not on the relation

between genus and species, but the inverse relation between universals. This is not to say

that modern science has no definitions relating genus and species. The whole of taxonomic

23Sophist, 283.
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systematization of various elements of natural science is in the form of Plato’s world of Forms.

In the present thesis, however, we will specifically concentrate on inversion based relations

between special kinds of Forms which we call dimensions. It is also important to make another

distinction for our purposes which is that the analysis that we find in this world of Forms,

will be taken as conceptual analysis, as contrasted with the analysis of arguments where the

elements are not Forms but statements or judgements. We will shortly see how Aristotle

‘invented’ an analysis of judgements, as contrasted with Platonic analysis of concepts. Before

we turn our attention to another master’s contributions, we first recapitulate, and then end

with a statement of what is going to come.

If one looks at the general picture of philosophical speculation after Socrates and

Plato, we find that a new abstract level is created ‘above’ the concrete. This is not to

say that thinkers before them did nothing abstract. But the difference, according to our

understanding, is that the abstract entities and relations ‘invented’ were given the same

place along with other ‘corporeal’ things. When Pythagoreans, for instance, abstracted out

the notion of number, they held that what they see in reality are numbers, for they did not

postulate an independent world of numbers. Both apparent and real aspects are seen in

a ‘undivided’ region. Plato’s picture, on the other hand, consists of an independent world

order of Forms, distinct from the unreal world of particulars to which we have access through

sensations. Metaphorically we can describe the development as follows: Before Plato, thinkers

thought that both Being and Becoming ‘occupied’ the same plane, while after Plato, we can

say that there are two planes, one of Being and another of Becoming, one above the other

with a gap in between, as shown in the figure 1.1. This development certainly helped in a
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Figure 1.1: Picture of Epistemology After Plato

remarkable manner, catalyzing a new stream of philosophical development, specially those
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that are essentially based on thought or abstraction, such as dialectics, formal logic, grammar

etc., but the gap between the planes eventually became a gulf , generating in due course wide

ranging epistemological problems.

Philosophers disagreed about the ontological status of the planes. Which plane

is virtual and which real? Plato, as is well known, argued for the reality of the upper

plane. Aristotle made the upper plane a nous dependent world, and the lower plane real

and independent of the nous.24 This gave rise to the problem of realism. Philosophers

also disagreed on the problems related to the content of universals. Plato argued that the

objects of the upper plane are the objects of scientific knowledge, while Aristotle argued that

the upper plane is an essential ‘instrument’ for having scientific knowledge of the objects

belonging to the lower plane.

Plato denied any logical relation between particulars and universals, consequently

propositions for Plato are only relations between universals. Aristotle invented a heteroge-

neous relation between them in the form of thematic-pair subject and predicate, necessary for

forming a judgement or statement. (The Stoics also have a possible hand in this invention.)

The formal logic of categorical statements is based on this heterogeneous relation.

Before we consider the other important thinker, Aristotle, a few observations are

in order regarding the place and role of particulars in the methods of Plato and Socrates,

the role and place of universals being secure in their method. This is found necessary be-

cause Plato’s preoccupation with universals and his seemingly idealist or rationalist position

has overshadowed the usual discussions to such an extent that his epistemology has been

portrayed as one that does not in principle give any significance either to experience or to

particulars. There are certain apparent pointers to show that he does not appreciate the

role played by particulars. However we will see that these hints are misleading and have

led to incoherent portrayals of Plato’s thought. By carefully following the role played by

particulars in the process of the method of recollection (the method of synthesis) leading to

the discovery of knowledge of universals, we shall try to show that Plato did not deny the

role of experience and of ‘opinion’ of particulars in the process. Without this, the method,

which is characterized as dialectical remains bereft of one of its complements. M.F. Burnyeat

has argued that Plato did not depreciate the role of particulars in his method.

The mistaken view of particulars must have emerged due to Socrates’ disapproval

of definition of forms by way of examples. Whenever examples are given as an answer to

24Aristotle’s disagreement with Plato is also in terms of the metaphysical status of universals and particulars.
He regards particulars as ‘containing’ both form and matter. Their views on ontology can be contrasted by the
labels universalia ante rem (universals prior to the objects) and universalia in re (universals in the objects),
where the former is Plato’s and the latter Aristotle’s conception.
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Socrates’ which-questions by the respondents, he ridicules them on the ground that they

are not answers to his question. For example Theaetetus responds to Socrates’ question

‘What is knowledge?’ by giving examples such as geometry, the art of the cobbler and other

craftsmen.25 To that Socrates replies that that is not the kind of answer he wants. He

illustrates to Theaetetus the nature of the answer that he is looking for. To the question

‘What is clay?’, to reply that clay is potter’s clay, oven-maker’s clay, brick maker’s clay etc.,

would be ridiculous. He says a desirable answer would be that clay is moistened earth.26 This

illustration is usually cited as that which demonstrates a depreciatory role for particulars in

the method.

Socrates disregards examples even as a preliminary answer to the question ‘What

is knowledge?’. Why? Because he considers that to know or to understand is to be able

to give a explicit definition of the Form or universal. A definition of a Form cannot be

obtained by enumeration. He says so because we may have learned to use a name for a

collection of things, without ever giving a thought to the question of what is common in

that collection of things. The philosophical turn that takes place with Socrates and Plato, to

our understanding, consists precisely in this. They have seen a possibility of talking about

something other than the common name that stands for all the examples—a non-trivial

characterization that describes the common quality applicable to a collection of things.

To arrive at this sort of understanding giving attention to examples (particulars) is

necessary in Plato’s dialectic. This is clear from the way Socrates examines various definitions

suggested during the Dialogues. The definitions suggested are examined with reference to ex-

amples. He only insists that the commonness of all examples be explicitly stated. Sometimes

he himself would add examples to help the respondent. He rejects examples only because

examples alone do not constitute knowledge or an adequate definition. He regards them as

data from which a definition is to be reached by a process of ‘leaping’ generalization. There

are enough indications to believe that this is an inductive leap. (Aristotle characterizes the

Socratic method as inductive.) Socrates explains that if the definition of an idea is known

then we will be able to tell what is and what is not an example of the idea.27

Plato held that the knowledge of Forms is present in us in dormant state, and it

can be brought back to our consciousness by the help of the method of dialectic.28 There

are certain ‘facts’ which upon initial consideration appear unfamiliar, even incredible, but

after, attending to them by pure reason, they appear self-evident. This is usually experi-

25Theaetetus 147.
26Ibid .
27Euthyphro 6.
28Meno 81ff.
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enced with regard to mathematical ‘facts’. This is the nature of the truth that is achieved

after recollection. In Plato’s dialectic, as well as in the Socratic method, one property of

method that is mentioned above is necessarily present, which is to help learning, either in

oneself or to others. This process is never complete without the knowledge of particulars

(examples), for how could one judge whether there is real understanding or consistent rule

following behavior?29 So it is one thing to say that Socrates and Plato argued going beyond

opinions about particulars (examples) and consequently have lowered the rating of opinion-

ated knowledge, but another thing to say that particulars have no role to play in the dialectic.

The former statement applies to Plato’s view but the latter does not. Without the method of

recollection, where sensory experience of particulars has a definite role to play in the process

of generating knowledge of Forms, Plato’s dialectic is incomplete. It is, we think, correct to

say that for Plato sensory experience and eventually the knowledge of particulars plays an

instrumental role in gaining the real knowledge of Forms. We shall see below that Aristotle

differs with his master on this issue in a subtle way.

1.4 Aristotle’s Empirical Method and Logic

Before we go on to a statement of Aristotle’s method of scientific demonstration, it

is worthwhile to compare him with his master, for he disagreed on crucial matters and it is

from these disagreements that his method, which is generally considered the real scientific

method, emerged.

The most crucial difference is with regard to the status of the dialectical method.

Aristotle differentiates two kinds of methods, viz. the empirical and dialectical methods.

Empirical inquiry begins from perception, followed by induction and generalization, and tests

theories by appeal to experience. Dialectical inquiry is initiated from common beliefs, followed

by raising and solving puzzles, and tests theories amongst common beliefs.30 Philosophers,

according to him, argue according to the truth which is known by nature, and we can reach

this by the empirical method. Dialecticians on the other hand argue according to common

belief.31

Why did Aristotle demand two distinct methods? An answer to this question can

29The latter Wittgenstein argued that understanding does not consist in anything more than following
a rule consistently. He criticized Socrates in The Blue Book , for being so obsessed with discovering the
essence of knowledge that he refuses to look at Theaetetus’ examples. For a detailed argument against
Wittgenstein’s view of Socrates, cf. Burnyeat 1977, Examples in Epistemology: Socrates, Theaetetus and G.E.
Moore, pp. 381–383.

30Cf. Irwin 1988, Aristotle’s First Principles p. 26.
31Ibid., p. 534, n14.
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be furnished if we understand the intent of some of the new divisions he introduced, his major

differences with Plato, and some of his original, and positive contributions to philosophy and

logic.

Aristotle’s differences are based on the fundamental distinction between substance

and quality. Aristotle thinks that, dialectic fails to yield scientific knowledge because it deals

only with attributes, let loose from the beings to which they are attributed. In Metaphysics,

for instance, he says, “dialectic and sophistic deal with the attributes of things that are, not

of things qua being, and not with being itself in so far as it is being; ... ”32 Here Aristotle

is pleading for a distinction between attributes on one hand and substance on the other

reintroducing the thematic-pair, substance and quality, prevailing in the thinking of Thales,

Anaximander and Anaximenes.33

More significantly Plato and Aristotle differed on the notion of definitions. Def-

initions, according to Aristotle, are statements of essence of a substance which inheres in

it, while for Plato they represent the way in which a particular Form is related to other

Forms. For Aristotle’s predecessors no definition of substance is possible, since there was no

‘being-what-it-is’, and therefore they were not knowable. M. Grene justifiably maintains that

Aristotle’s predecessors including Plato were unable to unequivocally state the prerequisite

for the establishment of scientific knowledge. The prerequisite is real definition in contrast

to conventional definition. Plato’s definition ultimately depends on conventions held by the

community because, as mentioned above, Plato’s dialectic is initiated by common beliefs. A

real definition is a statement of the essence of things, belonging to the lower plane, and it

speaks of “the peculiar substance of each thing, and what it is to be that thing”. Aristotle

contends that substances fall naturally into classes in such a way that we can specify, in

carefully chosen formulae, their essential natures.34

With this added distinction Aristotle classifies universals into accidental and essen-

tial . This new distinction should not be viewed as an alternative to Plato’s distinction of

Forms into genus and species. Aristotle also holds this Platonic division of universals. The

object of scientific knowledge is to know the essence of things by discovering real definitions,

and the knowledge of the essence is obtained through universals. Besides the essence inheres

in particular substances. Certain universals which describe a thing without referring to its

essence, are accidental; these do not constitute the objects of scientific knowledge. This is a

point of difference with his master who believes that all universals have a world of their own

32Metaphysics 1061 b 4–11.
33For details of the views of these thinkers see Chapter-7.
34Grene 1963, A Portrait of Aristotle p. 81.



1.4. Aristotle’s Empirical Method and Logic 29

and are the objects of scientific knowledge.

The character of this transformation in view, rather an inverted view of Aristotle,

is that scientific knowledge is about the essence/s present in the lower plane, while Plato’s is

about the Forms present in the upper plane. (See figure above.)

There is another point of difference between Plato and Aristotle with regard to the

dialectical method and the scientific method, which is very crucial for understanding the

nature of scientific knowledge, in the modern sense of the term. This is in relation to fixing

the subject-matter. The demonstrative arguments of the scientific knower, on the other hand,

predicates essential attributes of a carefully restricted subject-genus. The dialectician does

not restrict his subject. He maneuvers the argument to his advantage whatever the context

of his argument. Therefore, dialectical arguments, though formally valid, are baseless and

unscientific.35 Aristotle says, in Posterior Analytics, that we should not try to know the

whole of existence, the summum genus, through scientific method.

We can never know anything about anything, as distinct from having opinions
about it, unless we cut out one limited subject-matter out of a wider range and
restrict ourselves to it.36

Plato on the other hand seeks definition, against a background of indefinite flux. Grene

presents the difference between the two methods cogently as follows:

The unambiguous predications of science are possible only because things sort
themselves out naturally into kinds; knowledge results from the mind’s response to
such natural groupings. Transcend them and you transcend the limits of univocal
speech, which are the bounds of science. You have strayed beyond the well-
fenced limits of the being-what-it-is and are lost in the quicksands of dialectic
once more.37

We will see below that one of the important differences that can be found between the pre-

Platonic inquiries and post-Aristotelian inquiries consists precisely in this point of confining

oneself to a subject matter. Problems of inquiry are defined within the limits of this local ,

vis á vis., global , domain of inquiry. Without localization, essentially paradigmatic science

cannot be said to have begun. In this sense, the earlier conceptions about nature before

Plato, and of Plato, can not be called proper scientific knowledge.

It is therefore claimed in the thesis, that despite Aristotle’s failure in arriving at

correct scientific conceptions, his successful contribution in directing the attention of scholars

35Cf. Grene 1963, op.cit. pp. 190–191.
36Posterior Analytics 97 a.
37M. Grene 1963, op.cit. p. 87.
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towards problem oriented research can be rated as a revolutionary suggestion. We will see

in detail his specific suggestions in the Case Studies. Aristotle had very strong ground to

differ from Plato on certain basic assumptions. There is another dramatic development by

Aristotle, which is regarding the kind of relation that is admissible between universals and

particulars.

It is one of the unique features of Aristotle’s philosophy that while Plato associated

universals and particulars with the thematic-pair Being and Becoming, Aristotle associates

them with the thematic-pair subject and predicate. This is an indication of his attention

towards statements and language. Unlike Plato, Aristotle concentrates on statements as

elements of his study. Plato’s interest was either on a single idea or on relationships between

ideas. This is not to say that the Platonic association is not accepted by Aristotle, for he never

rejects the distinction between Being and Becoming. Rather he continues to think with the

same metaphysical orientation, though he prefers for a very important reason, which becomes

clear as we proceed, to use the terms ‘Form’ and ‘Substance’.

Nothing is available in Plato’s works in favor of subject-predicate distinction. Be-

sides he would not have agreed with this distinction to be associated with universals and

particulars, because, according to him, a statement is an instance of a blending or ‘weaving-

together’ of Forms.38 That is, it is a combination or synthesis of two or more universals.

This point is significant because we can distinguish only two significant ways of relating

Forms in Plato’s philosophy, granting his view on statements, viz., part-whole relation and

identity relation. All non-definitional statements are statements relating genus and species.

For example, ‘Man is an animal’ means the species Form ‘Man’ is a part of the genus Form

‘Animal’. And according to Plato if the Forms are ‘properly’, i.e., coherently combined, they

are true, otherwise false—a coherence theory of truth. All definitional statements on the

other hand are statements where a Form is defined by identifying it with the combination of

Forms that define it. For example, in the statement “Man is a rational, biped, animal” the

Form ‘Man’ is identical with the synthesis of the Forms, ‘Animal’ + ‘Biped’ + ‘Rational’.

This can appropriately be termed a chemistry of Forms.

It is necessary to digress and make an observation here about a deficiency of Plato’s

conceptual analysis, which is dubbed as a chemistry of Forms. This is with regard to the lack

of any scope for stating invariance of changes in the Platonic framework. Modern natural

science captures the Form of Becoming (variable and changing phenomena) by discovering

the invariant proportionality relations between variables. It it however clear that Plato has a

38Cornford 1935, op.cit. p. 266.
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reason for not searching for this. As mentioned above Plato is working out one of the possible

options, and certainly not the only possible option, of responding to the Sophists’ challenge.

For Plato Forms represent invariance, therefore the question of entertaining a possible science

of variations is inconceivable in his theory of knowledge.

Even in Plato’s metaphysics, as presented in Timaeus, where a mathematical Atom-

istic theory of reality is proposed, what we see is that Beings are allowed to combine and

separate giving rise to a variety of species. Despite his mathematical maturity he could not

foresee the other possibility of a Form ‘within’ variations. To our understanding he was ob-

sessed with his discovery of Forms, with the ‘one over many relation’, and can not see the

possibility of ‘one to one relation’, necessary for capturing the Form of functions based on

proportionality.

Aristotle makes a genuine attempt, though ultimately he too fails, to study a science

of motion in De Caelo, and Physics. An attempt to explain his failure is made in the Case

Studies. Let us return to the Aristotle’s views on the subject-predicate relation.

Aristotle’s views on predication are more elaborate and different from Plato’s. The

difference is not merely that he allows a subject-predicate relation between universals and

particulars, he furthermore insists that the subject of a statement can refer to either a Sub-

stance or a Form, but the predicate of a statement should necessarily be a Form. He says in

Metaphysics (1017 b 10-14) that Substances are not said of a subject. One of his criteria for

recognizing a Substance from Form is that it be a basic subject.39

Since anything that can be said of something else as its subject must have some

kind of generality, i.e. it can be said of other objects also, and since only universals can

have this character, only universals can act as adjectives. “An adjective which could be used

only on one unique occasion would not function as an adjective; and the something unique

it designated would not be something sayable of a subject.”40 Therefore all things that are

predicable of subjects are non-individual.

On the basis of the condition ‘present in a subject’ (inherence) we can distinguish

between two kinds of individuals, dependent and independent individuals, things that do not

exist by themselves and things that do. Those things which are individuals and independent,

e.g. this man, this horse etc., are first substances. These are the ultimate subjects in which

dependent individuals (individual accidents) are present, and of which other predicates are

said. Scientific Knowledge depends wholly on the right application of predicates, which are

39Similar statements suggesting the same are found in Categoriae, where the fourfold division of things is
discussed. Grene discusses the relevance of fourfold division of things for science. (Grene 1963, op.cit. p. 73.)

40Ibid., p. 73.
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general, to kinds of substances, which are also general. Thus science can approach as far as

independent individuals, while dependent individuals, being accidental, cannot be approached

by science. Thus Grene writes:

The propositions which constitute a science are univocal statements attributing
certain characteristics to certain kinds of substances. . . . In order to establish a
science of some subject matter, we must take a natural class of first substances,
and elicit from some other category or categories, also at appropriately generalized
levels, the right predicates for the characterization of its essence.41

A correct relation between a class of first substances and an appropriately chosen predicate

produces a real definition. Let us recall that, according to Aristotle, a real definition is the

prerequisite for the establishment of scientific knowledge, and that it is a statement of the

essence of the thing defined.

Another most remarkable achievement of Aristotle is that almost single handedly he

developed the foundations of formal logic. Though Aristotle’s logic is limited to Categorical

propositions, it is nevertheless a landmark achievement in the history of ideas. Our concern

here, however, is to highlight the too obvious point that unlike the conceptual (philosophical)

logic of Plato, Aristotle’s syllogistic logic is a logic of statements of the subject-predicate

form. It is important to make this observation that this logic, like most of modern logic of

statements, is based on the principle of non-contradiction.

The same attribute cannot at the same time belong and not belong to the same
subject and in the same respect.42

The crux of the proposal of the present work lies in presenting a visualization of a possible

logic of construction based on the logical relation of inversion, which has at least three

contrasting characters with the deductive logic. First, it is not based on the principle of non-

contradiction, second, it is not a logic of statements, and third, the outcome of the inference

is not a statement but a constructed structure. Detailed characterization, and argument will

be presented in Part-II, and Part-III.

Having noted the main thematic features of Aristotle we shall highlight certain

important features of his scientific or empirical method, which can be regarded as one of the

first scientific methods.

41Ibid., pp. 77–78.
42Metaphysics, 1005 b 19–20.



1.5. Aristotle and the Joint Method 33

1.5 Aristotle and the Joint Method

Aristotle talks of ‘the right method of investigation’ in the Posterior Analytics (Bk.

II, ch 13), which “starts by observing a set of individuals, and considers what they have in

common”,43 and then examines another set of individuals, generically identical, and so on

till we arrive at a ‘principle’.44

This is the description that he offers for the starting point of the method of investi-

gation, which is clearly induction – from particulars to universals. This is Aristotle’s second

level of induction which makes use of the ‘products’ of the first level of induction. The first

level fixes the universals and the latter the first principles or real definitions. According to

the traditional method of investigation we arrive at the knowledge of the unknown (first prin-

ciples) from known (the knowledge of the universals). The knowledge of the universals comes

from intuitive faculties of human being or nous, which includes the operation of perception,

experience and memory. Knowledge of the first principles depends on nous. The first step

does not require the expertise of the investigator, in the sense that he need not consciously

use his faculty of thinking. In the sense explicated above about the nature of method, this

first step cannot be properly regarded as a methodological step. Aristotle says the following

regarding this first level of induction.

[All human beings] have an innate faculty of discrimination, which we call sense-
perception ... after the act of perception is over the percipients can still retain
the perception in the soul.45

If this happens repeatedly a coherent impression is produced, thus giving rise to memory.

And repeated memories of the same thing constitutes experience, i.e., memories of a thing

may be many but they constitute a single experience.

And experience, that is, the universal when established as a whole in the soul -
the One that corresponds to the Many, the unity that is identically present in
them all - provides the starting-point of art and science.46

These faculties arise from sense-perception, just as, when a retreat has occurred in battle,

if one man halts so does another, and then another, until the original position is restored.

The soul is so constituted that it is capable of the same sort of process. Up to this point

Aristotle is talking of the first level of induction, which is a prerequisite for the second level

43Our italics.
44Here individuals can be safely interpreted as particulars, though they are not interchangeable in all

instances.
45Posterior Analytics 99 b25-100 a 14.
46Ibid.
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of induction, which alone is a part of the joint method of scientific investigation. Regarding

this Aristotle (100 a 15-b 5) says:

As soon as one individual percept ‘has come to a halt’ in the soul, this is the first
beginning of the presence there of a universal ... Then other ‘halts’ occur among
these (proximate) universals, until the indivisible genera or (ultimate) universals
are established. E.g. a particular species of animal leads to genus ‘animal’, and
so on. Clearly then it must be by induction that we acquire knowledge of the
primary premises, because this is also the way in which sense perception provides
us with universals.

Thus the path to the first principles is inductive. Clearly the processes that the term ‘induc-

tion’ designates in modern and Aristotle’s sense are so different. This is more akin to the

method of synthesis in Plato’s dialectic, except that it is rooted in sensory experience, while

in Plato this is aided by hypothetical ‘leaps’.

After fixing the genus by induction, he describes how a definition can be established

through the method of division in Ch.13. The investigator begins with the subject-genus

and divides it carefully to get the order of differentia correct, checking that the divisions are

exhaustive and that members of the species being divided all lie under one branch of the

genus.47

This latter method of division, as we clearly see, is akin to that of the method of

analysis in Plato’s dialectic. But, one thing we must bear in mind, which is that Aristotle

provided only hints and no explicit statements in this regard, and is therefore subject to

the whims of the interpreter. Nevertheless a few points are clear: The induction should

precede the method of division. The inductive method arrives at the definition, while division

establishes it. Induction moves from the particular to the general, and division from the

general to the specific.

Interpretations offered by the Italian Aristotelians of the school of Padua suggest

that Aristotle is the champion of the joint method of analysis and synthesis. However it

should be kept in mind that their writings are commentaries mainly of Physics and Posterior

Analytics, where the search is to discover causes of specific physical events. In this sense, the

terms, “analysis” and “synthesis” in the following discussion describe different methodological

procedures. This difference is the difference between the methods used in conceptual under-

standing (relations between genus and species) on the one hand, and indirect understanding

of natural phenomena by demonstrative syllogism on the other.

Aristotle never explicitly used the terms “analysis” and “synthesis”, but these terms

are used by the later Aristotelians appropriately following the description he gives of the two
47Cf. Noretta Koertge, in Thomas Nickles (ed.) 1980, Scientific Discovery, Logic, and Rationality p. 143.
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kinds of demonstrations, which are two complementary modes of knowing the fact. All

syllogisms, Aristotle says, will not yield scientific knowledge which is by demonstration, i.e.

by demonstrative syllogism. The premises of the demonstrative syllogism must be true,

primary, immediate and better known than the conclusion.48 The relationship between the

premises and conclusion is like that of cause and effect.

Of the two modes of knowing the fact, the first one is called demonstration qua which

follows the natural way of discovering the cause or the fact, which is possibly by inductive

method, and the second one is called demonstration propter quid , which follows the causal

order starting with the discovered cause and deducing the effect.49 The Greek terms for the

two modes are oti and dioti .

In the beginning of Physics (Bk.I 184a) Aristotle says that the starting point of

science is a confused mass, usually interpreted as that of effects, which require analysis.50

That is science (not the episteme of Plato, but Physics of Aristotle begins with the known or

proximate (effect), by the help of which the unknown or the ultimate (cause) can be reached

by the method. The former movement from effect to cause is called the resolution, while the

latter movement from cause to the effect is called the composition. After the discovery of the

cause, the effect would be explained in terms of the cause, i.e., the effect is approached again

in the method indirectly , via the knowledge of the cause. There is thus a regress or return

to the effect with which the inquiry started. However there is no circularity in the process.

Paul of Venice (one of the Italian Aristotelians) defends Aristotle’s joint method from the

charge of circularity as follows:

For in scientific method (in processu naturali) there are three knowledges: the
first is of the effect without any reasoning, called quia, that it is. The second is
of the cause through knowledge of that effect; it is likewise called quia. The third
is of the effect through the cause; it is called propter quid . But the knowledge of
why (propter quid) the effect is, is not the knowledge that (quia) it is an effect.51

In other words, first, the knowledge of the effect thus obtained is arrived at indirectly via the

cause, and second, the modality of the knowledge involved is explanatory. Using contempo-

rary expressions, the knowledge of the effect via the cause is theory impregnated. Since the

causes are the sorts that are usually not given to our direct sensory experience, they need to

48Posterior Analytics Ch-2, 71b.
49Posterior Analytics Ch-13, 78a.
50All the Italian Aristotelians (of Padua) interpreted the starting point of the method to be the knowledge

of effects. Good details of Italian’s reading and development of Aristotle is presented by Randall Jr. (1962).
It is interesting to know that Galileo, according to Randall, inculcated Aristotelian method from them during
his visit to the University of Padua at the time.

51Summa naturalis, Book I, cap. 9. Quoted in Randall, op.cit., p. 288.
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be ‘discovered’ by theoretical imagination. While the place where reason should play its role

is properly identified, the nature of the reason, except that it has a name of resolution, is not

clearly specified.

We think that this deficiency remained uncorrected not only in the entire Aris-

totelian thinking, but also in other methodologies proposed later. We shall see in detail in

the case study below, how Archimedes, and later Galileo, who belong to a mixed tradition,

could devise a model method based on inverse reasoning , for the discovery of ‘causes’, fol-

lowed by the explanatory regress.52 The exact role and nature of reason, complementing the

role of experience, is specified, giving rise to the proper scientific knowledge in the modern

sense of the term.

The worthiness of the Aristotelian model, however, lies in properly identifying the

place where the role of reason is involved in the context of discovery.53 Niphus (another Italian

scholar) interprets that the resolution of effect is captured in a conjectural syllogism, while

the composition of effect with the help of cause is captured in a demonstrative syllogism.54

A long period of critical reconstruction of Aristotelian teachings culminated in the works of

Zabarella, who, it is claimed by Randall, influenced Galileo.

Typical to the tradition Zabarella characterizes method as an intellectual instru-

ment producing knowledge of the unknown from the known. Method is a kind of syllogism,

according to him, because it connects one with the other through inference. There are only

two possible methods, composition or demonstrative method and resolution.

Demonstrative method is a syllogism generating science from propositions that
are necessary, immediate, better known, and the causes of the conclusion ... Res-
olutive method is a syllogism consisting of necessary propositions, which leads
from posterior things and effects better known to the discovery of prior things
and causes.55

Zabarella and the whole new generation of scientists that followed him, of which Galileo is also

a crucial figure, entertained the belief that scientific experience springs from mere ordinary

observation. They insisted that experience must be first carefully analyzed to discover the

principle or cause of the observed effects. Thus, science proceeds from rigorous resolution of a

few selected instances to a general principle, and then from that principle to the systematized

52The expressions “mixed tradition”, and “inverse reasoning” will be explained below.
53It should be pointed out that by “reason” is not meant deductive reason alone. Such a narrow view of

reason is the character of scientific methodology of the current century, which more or less has eventually
denied the complementary creative component.

54Cf. Randall, op.cit., p. 290.
55De methodis, Lib. I, cap. I. Quoted in Randall, op.cit. p. 293.
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science, and then composition as a proof.56

He finds four stages in the process of this regress: observation of the effect; resolving

the complex fact into its components and conditions; mental examination of the hypothetical

cause to find its essential elements; and demonstration of the effect from that cause. The

third stage is called “mental examination”, which Niphus called negotiatio of the intellect. He

elaborates, then, the two things that are considered in the middle stage of mental examination,

which helps us toward knowing the cause distinctly.

It is interesting to see that the first three stages are part of the method of resolution,

while the fourth demonstrative stage, which is deductive syllogism, is all that there is to

the method of composition. This is an indication that the problem of discovery is the more

dominating concern than the problem of justification. Today’s situation is just the reverse, as

we will see below. Another point to note here is that the Aristotelians have seen that without

the involvement of “mental examination”, i.e., involving a source other than sense experience,

the discovery of causes is impossible. It is therefore well recognized by Aristotelians that

scientific investigation depends on both creative and sensory faculties.

One of the shortcomings of Zabarella’s method, as well as of any other Aristotelian,

is that in the discovery of scientific principles no role is assigned to mathematics. However

he makes interesting observations worthy of consideration. Like his predecessors, such as the

Averroists, he makes the distinction between the method of resolution suitable for natural

science and the method of “analysis” of mathematics. In the latter we can start from either

the principles or the consequences. In the former, however, we must start with effects observed

by the senses, i.e. with the method of resolution. In the mathematical method whether we

start from resolution or composition is merely a technical matter, and each of the methods

here are independent.

This is a general sketch of the joint analytico-synthetic methods in Aristotelian

thinking. We distinctly see that the method, over a period of time, has been enriched without

a corresponding development of scientific knowledge. Either something is wrong with the

methodology, or it is preached but never practiced, or it could also be that methodology

has nothing to do with the actual development of scientific knowledge. All these doubts

and speculations are natural, for this whole stream of philosophical reflection from Plato’s

Academy to the University of Padua could not produce scientific knowledge, in the modern

sense of the term. But this is just one stream that emanated from the Academy. There are

56We will see in the case study that Archimedes made a big break-through by choosing balance as the selected
instance, from which he lifts (abstracts) general principles of the lever, which in turn became fundamental for
not only statics, as usually considered, but also for the development of modern science in the hands of Galileo,
which will be disussed in detail below.
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other rather fertile streams, from the point of view of the development of scientific knowledge.

One such stream is based on Euclid’s mathematical edifice, while another stream

is based on Archimedes’ experimental edifice. Needless to say, both these have eventually

become very hard bricks in the bedrock of scientific knowledge. Interestingly both the streams

developed in the School of Alexandria. What is peculiar to this School? We will have to wait

till it gets answered eventually in the course of the essay. Presently our concern is not to

narrate the success story, but the unsuccessful story of philosophical reflections on scientific

knowledge and method.

Before we end this section on Aristotle we shall make, what we regard, an observa-

tion of some interest. It is to note that the method of resolution can be said to be a part

of, what we today call, the context of discovery, while the method of composition can be

regarded as a part of the context of justification. We are aware that in the current usage

the context of justification is deductive, and hence called analytical, while the context of

discovery is ampliative or inductive, and hence synthetic.57 It therefore appears that, in the

same context, one has seen resolution, while the other has seen synthesis. This terminological

inversion should not cause much confusion, when we realize that the Aristotelians are talking

in terms of what is happening to the objects of inquiry, causes and effects, while methodolo-

gists of the current century use a linguocentric vocabulary, which cares more about what is

happening to the ‘instruments’ of inquiry in the process of inquiry, such as statements. This

inversion in the philosophical orientation, as it appears to us, is due to the shift in points of

view from the extensional view to the intensional view. Despite this transformation in orien-

tation, the central concern, which is to attempt answering the two fundamental questions of

epistemology, which continued till the middle of this century. It would be a very interesting

problem for a historian of ideas to study what factors led to this change. To understand this

change demands a separate work. Since we are not presently engaged in understanding the

intricacies of this historical problem, it suffices to make the following observation.

In the conceptual methods of synthesis and analysis, which are discussed above, i.e.,

those of Plato and of Aristotle, there exists a process called synthesis, which refers to the

process of cognitive movement from the level of particulars to the level of universals. And

there exists another process called analysis which refers to the division of genus to species,

both of which belonging to the level of universals. Thus in different contexts the terms meant

different things. However it is interesting to note that in this case too, the two processes

correspond to the contexts of discovery and justification. Thus the joint methods should

57We will see below that in due course this synthetic component was abandoned by many leading to
epistemology-minus-synthesis.
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be properly contextualized to know the proper reference and thus to avoid confusion. The

general methodological theme of analysis and synthesis remains only a theoretical model

functioning as a meta-level guide to organize epistemological thinking, which can be seen in

several contexts in the history of methodology.

One significant theme of the joint method is that science does not start from scratch,

for it starts from something which is already known. This theme remains a part of the other

successful stream mentioned above, which (so we claim) generated science proper. To this

we now turn.

1.6 Method in Greek Mathematics

Among the ancient mathematicians too the method of discovering solutions to math-

ematical problems followed the pattern of reaching the unknown from the known, and then

returning to the known from the newly discovered knowledge, in order to validate newly

arrived knowledge. The method employed by ancient geometers to calculate the area of any

regular shaped surface can be a best example to illustrate the method of reducing the un-

known to the known. It was taken for granted that the area of a rectangle is the product of

its base and height, (Area= b× h), which is the known constituent of knowledge. From this

they found out methods of calculating the areas of all polyhedrons. The method can be gen-

erally characterized thematically according to the joint method as follows. As shown in the

figure 1.2, any other polydedron other than a regular rectangle is first analyzed (dissected)
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Figure 1.2: Reducing the Unknown to the Known
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in such a way that the area can now be seen as a sum of several rectangles, or several half

rectangles. Since they know the method of measuring the area of any rectangle, all that they

need to do is to add the rectangles and half rectangles to get the total area of the unknown

polyhedron. The polyhedron PQRS, for example, is first analyzed as if it is made of two half

rectangles (shown in dotted lines) and one full. If the areas of the rectangles are a, b, and

c, in the order they are drawn, the area of PQRS will be a/2 + b + c/2. Similarly for the

polyhedron ABC, which is a triangle, a/2 + b/2 or 1/2(a + b) will give its area.

The same method was applied to calculate the area of irregular shapes, though the

value obtained would be true only approximately. It is well known that Archimedes extended

the same method to know the measurements of other complicated shapes like the circle, the

oval etc. His method has later come to be known as the method of approximation.

This instance of the joint method in mathematics is clear and simple, because the

operations involved are ‘extensional’. However Euclid’s version is pretty involved due to its

highly theoretical character. The characterization of the method can be found in Euclid’s

Elements, Book XIII. The account of the method as understood by Euclid and other Greek

mathematicians is given by Pappus (c.300 AD). The method, Pappus says, is for those who

“are desirous of acquiring the power of solving problems ... and it is useful for this alone.”

The method, according to Pappus, was worked out by Euclid, Apollonius and Aristaeus,

which proceeds by way of analysis and synthesis.

Analysis . . . takes that which is sought as if it were admitted and passes from it
through its successive consequences to something which is admitted as a result of
synthesis: for in analysis we assume that which is sought as if it were (already)
done, and we inquire what it is from which this results, and again what is the
antecedent cause of the latter, and so on, until by so retracing our steps we come
upon something already known or belonging to the class of first principles, and
such a method we call analysis as being solution backwards.

But in synthesis, reversing the process we take as already done that which was
last arrived at in the analysis and, by arranging in their natural order as conse-
quences what were before antecedents, and successively connecting them one with
another, we arrive finally at the construction of what was sought; and this we call
synthesis.58

This method is fundamental to Plato’s program in mathematics, which is to find trivially

true axioms and to deduce all of arithmetic and geometry from them. Euclid was considered

by Proclus as one who completed Plato’s program.59 However, from the point of view of our

search for a logic of discovery, this method does not have much to offer, because so much is

58Quoted in Imre Lakatos 1978, Mathematics, Science and Epistemology: Philosophical Papers, Vol.II p. 64.
59Cf. P. Marchii 1980, ‘The Method of Analysis and in Mathematics, in Nickles 1980, p. 164ff.
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assumed in the process of the method, such as first principles which are already considered

to be a part of accepted knowledge. What would be interesting is to know how we arrive at

the first principles. The above method does not appear to have any scope for that. But from

the remarks of Pappus it is clear that it is intended to be a problem solving method. Lakatos

and Szabo have suggested that the method can be viewed as a discovery method provided

the starting point of the principles is regarded as hypothetical . If the hypotheses are rigidly

fixed, their use becomes less interesting.

Assuming that problem solving belongs to the context of application of already ar-

rived principles, we find it reasonable to think that Euclid’s method does not properly belong

to the context of discovery. Further it should be noted that in this version of the joint method,

the order of analysis and synthesis appear to be irrelevant. If it is a method of discovery,

however, the starting point and the nature of the starting point would matter significantly,

because the initial step should be that which leads to the principles or hypotheses. But the

method is clearly a perfect “circulatory system”, as Lakatos would put it, without beginning

and end. Therefore we think that whatever be the significance of the method for problem

solving heuristics, it does not throw enough light on the problem of discovery, with which we

are presently concerned.



Chapter 2

The Marriage of Mathematics and

Natural Science

We have seen above basically three kinds of joint methods of analysis and synthe-

sis. The first kind is about discovering and establishing the relationship between genus and

species, e.g. Plato’s method of composition and division, and Aristotle’s first method of

finding ‘essences’. The second is the later Aristotelian method of demonstration qua and

propter quid (resolution and composition) extended and enriched by the Paduan school. The

third is the method announced by the Greek mathematicians in the form of analysis and

synthesis. Another new form of methodology, also put in the traditional analytico-synthetic

theme, came into being in the hands of Galileo, though, the method has clear beginnings in

Archimedes and later in Kepler. We shall discuss thematically the birth of a new methodol-

ogy, that has really survived with success till date. It is this form of methodology that will be

renovated in the thesis, keeping in mind contemporary epistemological problems. As already

mentioned more than once, one common theme of all the analytico-synthetic methodologies

is the reduction of an unknown to the known. We will attempt to show that this indeed is

the enduring theme of the generativists.

2.1 Galileo’s Role in Transforming the Objects of Knowledge

Galileo’s contribution, we think, lies in synthesizing the Aristotelian empirical

method and the mathematical or geometrical method of the Greeks. Galileo’s program is to

translate scientific experience into experience that can be expressed in mathematical terms.

Anyone who attempts to accomplish this must be able to face a problem long known in his-
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tory. The problem has been posed by the historians of science as one between the Platonists

and the Aristotelians. The former thought that nature is mathematical in character and the

latter thought that mathematical descriptions are neither true nor false, while physics tells

us the truth about the world by following the empirical method.1

Unlike the Platonists, Galileo was not trying to apply mathematics or geometry

to describe the Platonic world of ideas, but was attempting to apply geometry to the real

physical world, which is believed to be hidden behind the phenomenal world.2 For traditional

Platonists the problem of application does not arise because the perfection of Beings can not

be applied to or matched with the imperfection of Becomings. The Book of Nature which

Galileo was intending to read, which he believed is written in the language of mathematics, is

not a book of the Platonic kind. If that had been the case, truly speaking, Galileo would have

had no problem to solve. Whatever Galileo had contributed is acknowledged as a remarkable

achievement mainly because he tried to apply mathematical order also in a domain which

had been traditionally conceived as non-mathematizable.

In what follows we shall observe that Galileo took some significant steps, first to

enable the application of mathematics to physical phenomena; second to suggest that the

material hindrances be eliminated in order to find the objects that are independent of sen-

sory experience and convention; and third to suggest a mathematico-experimental method,

Galileo’s version of the joint method.

In the Dialogues Concerning the Two Chief World Systems (1632) Simplicio, like a

true Aristotelian, expresses doubts about Galileo’s project.

. . . [T]hese mathematical subtleties do very well in the abstract, but they do not
work out when applied to sensible and physical matters. For instance, mathe-
maticians may prove well enough in theory that spheara tangit planum in puncto
. . . ; but when it comes to matter, things happen otherwise. What I mean about
these angles of contact and ratios is that they all go by the board for material
and sensible things. 3

Now Galileo should either show how a physical (real) plane touches a physical sphere at a

point or show how an ideal plane can touch an ideal sphere over many points over a surface.

In fact Galileo’s answer consists in realising that both are geometrically possible. Salviati,

who speaks for Galileo, responds to Simplicio’s objection after long deliberations.

Salviati: Are you not saying that because of the imperfection of matter, a body

1Cf. Butts 1978, New Perspectives on Galileo p. 70.
2For more appropriate interpretation of Galileo’s position we shall have to wait till the distinction between

primary and secondary qualities is also presented.
3Galileo Galilei 1632, Dialogues Concerning Two New Sciences (Translated by Stillman Drake) p. 203.
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which ought to be perfectly spherical and a plane which ought to be perfectly flat
do not achieve concretely what one imagines of them in the abstract?

Simplicio: That is what I say.

Salviati: Then whenever you apply a material sphere to a material plane in the
concrete, you apply a sphere which is not perfect to a plane which is not perfect,
and you say that these do not touch each other in one point. But I tell you that
even in the abstract, an immaterial sphere which is not a perfect sphere can touch
an immaterial plane which is not perfectly flat in not one point, but over a part
of its surface, so that what happens in the concrete up to this point happens the
same way in the abstract . . . 4

This argument contains one of the most central thesis of Galileo, in his attempt to show that

mathematics can be the language of the book of nature. Butts reformulates the central point

as follows:

For any x , y and t , if x is a perfect material sphere and y is a perfect material
plane, and t is a definite interval of time, and x and y remain perfect through t ,
then x and y touch one another in a single point when y is struck as a tangent of
x .5

It is indeed a token statement of applied geometry, which describes a particular condition

or situation of the world. Given that the antecedent can never be satisfied by actual solid

objects, (he agrees with his predecessors on the point) the statement will always be a true

counterfactual, because the ‘fact’ to which it is applied is not directly given in experience.6

What happens in the world,therefore, is what happens in geometry. This is Galileo’s

first move in the direction of achieving his target. Given this, what should one do in order

to see mathematical order in the world? His answer is that one must deduct the material

hindrances, or defalking the impediments of matter. This, according to Butts, is the sec-

ond central theses of Galileo.7 This consists in choosing only those characters that can be

mathematically expressed and eliminating those characters that fall outside mathematical

description.

Just as the computer who wants his calculations to deal with sugar, silk, and wool
must discount the boxes, bales, and other packings, so the mathematical scientist
(filosofo geometra), when he wants to recognize in the concrete the effects which
he has proved in the abstract, must deduct the material hindrances, and if he is
able to do so, I assure you that things are in no less agreement than arithmetical
computations.8

4Dialogue p. 207; our italics.
5Butts, op.cit. p. 73.
6Ibid.
7Op.cit . p. 74.
8Two Systems, p.207.
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This is the condition of mathematization. In other words deducting material hindrances

would mean creating a set of ideal conditions such that abstract effects can be actualized in

the concrete world. This must be the real reason for experiment in science. We shall return

to this a little later.

This point can be appreciated in relation to the other very important distinction

Galileo introduced, which eventually became a very popular theme of philosophical specu-

lation, namely primary and secondary qualities. One might think that this distinction is

necessary for accomplishing Galileo’s program. But we will show below that this distinction

does not play the said role of finding out mathematizable properties, and therefore has no

methodological significance. The two famous passages from the The Assayer clearly indicat-

ing the distinction are as follows:

Now I say that whenever I conceive any material or corporeal substance, I
immediately feel the need to think of it as bounded, and as having this or that
shape; as being large or small in relation to other things, and in some specific place
at any given time; as being in motion or at rest; as touching or not touching some
other body; and as being one in number, or few, or many. From these conditions
I cannot separate such a substance by any stretch of my imagination. But that it
must be white or red, bitter or sweet, noisy or silent, and of sweet or foul odour, my
mind does not feel compelled to bring in as necessary accompaniments. Without
the senses as our guides, reason or imagination unaided would probably never
arrive at qualities like these. Hence I think that tastes, odours, colors, and so
on are no more than mere names as far as the object in which we place them
is concerned, and that they reside only in the consciousness. Hence if the living
creature were removed, all these qualities would be wiped away and annihilated.
But since we have imposed upon them special names, distinct from those of the
other and real qualities mentioned previously, we wish to believe that they really
exist as actually different from those.9

To excite in us tastes, odours, and sounds I believe that nothing is required
in external bodies except shapes, numbers, and slow or rapid movements. I think
that if ears, tongues, and noses were removed, shapes and numbers and motions
would remain, but not odours or tastes or sounds. The latter, I believe, are
nothing more than names when separated from living beings, just as tickling
and titillation are nothing but names in the absence of such things as noses and
armpits.10

Of the two lists Galileo gives the former is the list of primary qualities, while the latter is of

the secondary qualities. The qualities included under the head of primary qualities is very

revealing of the non-Platonic position of Galileo. To be in space and time, and being in

9Galileo Galilei, The Assayer , 1623, Quoted in Stillman Drake 1957, (Translated and Edited) Discoveries
and Opinions of Galileo, p. 274.

10Ibid., pp. 276-77.
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motion are considered primary qualities and the objects of scientific knowledge. Let us recall

that for Plato the objects of episteme are Forms, which are not located in any space, are

eternal, and since they are Beings, they do not become, so no change and no motion can be

attributed to them. It should also be noted that the primary qualities are about corporeal

and not incorporeal ‘substance’, and therefore there is no doubt that Galileo is quite unlike

Plato.

Secondary qualities (like tastes, odours etc.) are not in bodies which do have certain

other qualities called primary qualities (like shapes, number, motion etc.) to excite in us the

experience of the former. Primary qualities are considered to be some sort of causes impinging

in us the sensations. What is given to us in our consciousness is therefore considered as effects

due to the senses and what is not immediately (directly) given to us are the independent things

of the world, because Galileo says shapes, numbers and motions would remain even if our

senses were removed.

As far as Galileo’s program of mathematizing the real world is concerned, primary

qualities are indispensable, and secondary qualities dispensable. However, this relationship

between primary qualities and mathematizable qualities is unwarranted. When Galileo talks

of deducting the material hindrances, one may say, he certainly has in mind the secondary

qualities. Let us look at Galileo’s analogy. (See the quotation above.) For the purpose of

determining the amount of sugar in a warehouse a clerk neglects (deducts) the contingent

facts, such as the sugar is in bags, or in boxes, or in open containers and so on. If he wants

to measure the weight, size, shape etc. of the container, though primary, are to be deducted.

Is this ‘deduction’ based on any water tight compartmentalization of primary and secondary

qualities or does it depend on any other factor? If one wants to measure some thing by volume,

some other factors should be eliminated than those mentioned above, and if one wants to

consider the geometrical forms, both volume, weight, along with others become eliminable.

Therefore in the process of applying mathematics to the world, the principle of deducting

material hindrances can be employed only as a way of approaching the measurable, and what

gets deducted depends on what quality one desires to measure. Galileo cannot be right if

he says that only primary qualities are measurable. Butts also criticizes him for grouping

all sensory qualities as secondary, and therefore not measurable and also for holding that

secondary qualities are not in the object. He argues that Galileo can be right that motions

are the cause of heat, and still be wrong that the heat in no sense exists in the object, e.g.,

the boiling water. Certainly the thermometer measures something , and it is not a something
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that exists merely as a potentiality to produce a sensation of heat in a perceiver.11

We therefore think that the distinction between primary and secondary qualities

is not necessary for finding measurable qualities, and therefore for mathematization. It

is incorrect, therefore, to confuse material hindrances with secondary or sensory qualities.

The above example shows that even relational qualities like mass, volume etc., which are

clearly primary qualities according to Galilean criteria, can also become hindrances if what

we want to measure is say shape or number or something else. Therefore we conclude that

this distinction has no methodological significance. What is significant for the program of

idealization is deducting hindrances, not necessarily material hindrances. What counts as a

hindrance cannot be stated in certain terms.

In this connection it is important to consider another distinction that Galileo makes

between extensive and intensive modes of knowing.

[H]uman understanding can be taken in two modes, the intensive or the extensive.
Extensively , that is with regard to the multitude of intelligibles, which are infinite,
the human understanding is as nothing even if it understands a thousand proposi-
tions; for a thousand in relation to infinity is zero. But taking man’s understand-
ing intensively , in so far as this term denotes understanding some propositions
perfectly, I say that the human intellect does understand some of them perfectly,
and thus in these it has as much absolute certainty as Nature itself has. Of such
are the mathematical sciences alone; that is, geometry and arithmetic, in which
the Divine intellect indeed knows infinitely more propositions, since it knows all.
But with regard to those few which the human intellect does understand, I believe
that its knowledge equals the Divine in objective certainty, for here it succeeds in
understanding necessity, beyond which there can be no greater sureness.12

Undoubtedly such pronouncements must have played a very fundamental role in Galilean

days, when humanism was on the rise. The message is clear: Human beings can know Nature

as perfectly as God. This would make a clearly different kind of response to the Sophists’

challenge that we have discussed above, and is quite non-Platonic. Extensively we may

never be able to exhaust all the variety of nature. Since extensive knowledge is based on

non-mathematical qualities, and if each such quality refers to some essence of a thing then

there are as many essences as there are qualities. Since there is no limit to kinds of things,

complete knowledge of them is impossible. To this extent the Sophists should have agreed

with him. But the intensive knowledge of mathematical objects is possible. Plato’s response

looks similar to Galileo in the sense that both of them thought that true knowledge is about

mathematical objects. However, as already mentioned above, Galileo’s mathematical objects

11Butts op.cit., p. 67.
12Galileo, 1632, p. 103, Italics original.
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are different from Plato’s. But it should be remembered that Galileo is not here responding

directly to the Sophists; he is arguing against the Aristotelians who believed that episteme

is about these innumerable essences, and that the knowledge of them is possible. This is a

clear departure from Aristotelianism. If these observations are correct they should indicate

sufficiently that Galileo is neither Platonic nor Aristotelian, but is original in many ways.

Galileo’s opposition to Aristotelian essences becomes more clear in his letter to the

Jesuit mathematician, who denied that the sun-spots could be on the sun itself, for as the

most luminous of bodies the sun could not generate its opposite, darkness. Galileo bursts

out at him - as though things and essences existed for the sake of the name, not the names

for the sake of the things. He writes that he does not find any advantage in understanding

the essences of substances.

If I ask about the substance of the clouds, I am answered, they consist of a damp
mist; if I wish to know further what this mist is, so I am taught perchange that
it is water rarefied through the force of warmth. If I remain in my doubt and
wish to know what water really is, in all my investigations I will only learn in the
end that it is that fluid which runs in streams and which we continually touch
and taste: a knowledge which to be sure enriches our sense perception, but leads
us no further into the interior of things than the notion I had of clouds to begin
with.13

Our knowledge of nearby objects is not more than that of distant objects like the moon and

the sun. But with respect to intensive knowledge, our knowledge of the celestial objects is

better than that of nearby objects.

For do we not know the periods of the planets’ revolutions better than the different
tides of the sea? Have we not grasped the spherical form of the moon much sooner
and more easily than that of the earth?14

Having denied importance to the extensive mode of knowing Galileo chose the intensive mode

of knowing.

The objects of knowledge of this intensive mode are relational forms of things,

“their position, their motion, their form and size” etc., and are therefore mathematizable or

measurable. Characterization based on certain relational qualities has “absolute certainty

as Nature itself has”. We are reminded of Aristotle’s desire to know things as clearly as

they are known by nature. However, as we just observed, they differ on the issue of what

are the objects that are known by nature. Aristotle thought we can know the essence of

13Lettere intorno alle macchie solari , in Opere, Ed, Alberi, III, 462ff. Quoted in Randall Jr. 1962, Career
of Philosophy: From the Middle Ages to the Enlightenment .

14Ibid..
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things, which is his object of knowledge, i.e., by extensive knowledge, while Galileo thought

that we can understand Nature’s language better by intensive knowledge. The objects of

scientific knowledge have clearly undergone a transformation. Succinctly we may say that the

nature of transformation with respect to Aristotle is from qualitative episteme to quantitative

episteme, and with regard to Plato it is from absolute Forms to relational Forms, which

includes dynamic and static relational forms.

According to Galileo’s version of the joint method of analysis and synthesis, the

scientist begins with a hypothetical assumption. The hypothesis does not come immediately

from observation and the measurement of facts, but rather from an analysis of the mathemat-

ical relations involved in a given problem. Only after the mathematical relations involved in

the initial hypothesis have been demonstrated by the method of composition, does it possess

a quantitative meaning and implication that it can be compared and measured with observa-

tions and experiments.15 What is involved in mathematical analysis? Galileo illustrates the

method of mathematical analysis, thus:

When . . . I observe a stone initially at rest falling from an elevated position and
continually acquiring new increments of velocity, why should I not believe that
such increase takes place in a manner which is exceedingly simple and rather ob-
vious to every one? If now we examine the matter carefully we find no addition or
increment more simple than that which repeats itself always in the same manner.
This we readily understand when we consider the intimate relationship between
time and motion; for just as uniformity of motion is defined and conceived through
equal times and equal spaces (thus we call motion uniform when equal distances
are traversed during equal time-intervals), so also we may, in a similar manner,
through equal time-intervals, conceive additions of velocity as taking place with-
out complication, thus we may picture to our mind a motion as uniformly and
continuously accelerated when during any equal intervals of time whatever, equal
increments of velocity are given to it.16

The mathematical analysis of the problem first consists in understanding “the intimate rela-

tionship between time and motion”. Then, motion is “defined and conceived through equal

times and equal spaces” arriving at the definition of uniform velocity: a motion is uniform

when equal distances are traversed during equal time intervals. One might ask ‘Why define

uniform motion?’. It could not have been because Galileo thought motion is always uniform.

But because uniform motion is a simple kind of motion, which can be defined and experi-

mentally realized for empirical study. Similarly, i.e., in the same simple manner, he defines

uniform acceleration. Thus acceleration and velocity have a specific definition, and as a result

15Cf. Randall Jr. 1962, p. 348.
16Two New Sciences, Crew and de Salvio, p. 161.
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a specific meaning. Then having obtained the definitions, he postulates hypothetically the

law of free fall, which is a statement that asserts that the distance increases proportionally

to the square of time. For this he gives a plausibility argument that “we find no addition

or increment more simple than that which repeats itself always in the same manner”. Why

square of time, why not simple proportionality? Galileo did not arrive at this without false

starts. In the initial stages he never analyzed the matter in terms of acceleration. Since the

details are presented in the case study, we shall postpone further discussion till the substan-

tial details are also available. It is sufficient to observe here that there were many false starts

before he could finally arrive at the law.

Thus the most important phase in the context of discovery is first to have clear

and precise definitions of measurable (mathematical) parameters of a phenomenon, such as

velocity and acceleration, in terms of certain other measurable parameters, such as space and

time. This phase is the initial mathematical analysis, followed by an hypothetical assump-

tion. Based on definitions and assumptions certain theorems (consequences) are proved to

demonstrate the internal coherence. Galileo spends a lot of time in his later works proving

a number of theorems, explicating the semantic content of the assumptions and definitions.

This is the complementary mathematical synthesis. Then Galileo proposes that the hypoth-

esis be verified by experimental observations.

After completing the method of mathematical resolution and composition, which is

based on definitions, the mathematically demonstrated hypothesis can now be compared and

measured with observations and experiments.

If experience shows that such properties as we have deduced find confirmation
in the free fall of natural bodies, we can without danger of error assert that
the concrete motion of falling is identical with that which we have defined and
assumed; if this is not the case, our proofs still lose nothing of their power and
conclusiveness, as they were intended to hold only for our assumptions – just as
little as the propositions of Archimedes about spirals are affected by the fact that
no body is to be found in nature that possesses a spiral motion.17

Here Galileo is more than clear that the theoretical analysis based on definitions and as-

sumptions (hypotheses) has its own value, whether we actually find them in reality. Here

lies the significance of mathematical physics per se. If we can find the mathematical objects,

properties of which are well known in the concrete world, then and only then we “can without

danger of error assert” that the world is as we have defined and assumed in the definitions

and assumptions. Even if we cannot find the counterparts of such theoretical objects in the

17Letter to Carcaville, 1637; Opere, Ed. Alberi, VII, 156; Quoted in Randall Jr. op.cit. p. 348.



2.1. Galileo’s Role in Transforming the Objects of Knowledge 51

actual concrete world, the knowledge of the defined object would not be entirely worthless.

The demonstration, therefore, will be valid whether or not an application is found. However,

Galileo is not for complete theoretical research without caring to verify it empirically.

Why is Galileo introducing a new experimental method, apart from the mathemat-

ical method? Why is it that only experimental observation and not mere observation can

demonstrate mathematical hypotheses? This is because it is only in an experimental situa-

tion, which tries to mimic ideal conditions, that idealized mathematical propositions can hold,

however approximately. This is to create an ‘environment’ where the material hindrances are

deducted. The affine manner in which the mathematical objects are constructed and demon-

strated cannot be obtained in the world of ‘open’ experience. Therefore we need to construct a

‘closed’ experimental world free from material hindrances. Thus Galileo felt the simultaneous

need of both mathematical and experimental methods of scientific investigations.

This picture of Galileo’s methodology appears to have affinities with the

hypothetico-deductive methodology proposed in the beginning of the twentieth century by

Popper, Hempel etc. However in Galileo’s method definitions are given more fundamental

status than hypotheses, for the latter are formed on the basis of pre-constructed definitions.

Thus the origin of hypotheses has a clear basis, unlike in Popper’s view where any basis is

denied. The problem however still persists, because it is not clear how one would construct

definitions. We discuss the role of inversion in constructing definitions in Chapter 6. Though

Galileo is not entirely explicit, he gives clear clues about how he constructs them, after which

he postulates hypotheses. Here he would make use of the idea of inversion, and therefore

we will postpone the details to a latter part of the thesis. We are content here to state that

Galileo too believed in the methodological theme of analysis and synthesis.

We have observed in the beginning of this section that Galileo is linking two meth-

ods together: the Euclidian method of analysis and synthesis and the Aristotelian method

of resolution and composition. Randall Jr. (1940) argued that Galileo is influenced by the

Aristotelians of the school of Padua. Gilbert (1963) argued in response to Randall’s thesis

that he is influenced by the Greek mathematicians. We think that both these claims are true.

We have observed above that he differs with both Plato and Aristotle in a significant manner.

The Greek mathematicians on the other hand clearly influenced Galileo, but they were not

concerned with the philosophical problems for supporting either mathematical or experimen-

tal physics. The Aristotelian influence is also clear in his desire to solve specific problems.

We should therefore understand him as a great blending character. Peter Machamer (1978)

correctly observes that Galileo belongs to a tradition of mixed sciences.
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The tradition is that of the mixed sciences, which is itself a tradition blend-
ing mathematics and physics (or natural philosophy), blending Platonic (or neo-
Platonic) and Aristotelian elements, blending reason and observation.18

Galileo’s method has another feature that requires special mention, and this is also a major

point of difference between Galileo and Descartes. Galileo is not only interested in pure

mathematical mechanics per se. He is interested in those principles that are exemplified in

nature. For that he fixes his subject matter by defining the natural phenomena to be studied.

And first of all it seems desirable to find and explain a definition best fitting nat-
ural phenomena. For anyone may invent an arbitrary type of motion, and discuss
its properties; thus for instance some have imagined helices and conchoids, as
described by certain motions which are not met with in nature, and have very
commendably established the properties which those curves possess in virtue of
their definitions; but we have decided to consider the phenomena of bodies falling
with an acceleration such as actually occurs in nature and to make this defini-
tion of accelerated motion exhibit the essential features of observed accelerated
motions.19

The first remark clearly suggest that he is not inclined to do pure mathematics like the Greek

mathematicians. Here Galileo is clearly referring to Archimedes, whose work on helices and

conchoids in geometry is well known. This should not be taken to mean that Galileo is against

pure mathematics, but he is appealing to complement definitional knowledge by applying it to

the actually occurring phenomena. Galileo’s ultimate interest is to define natural phenomena

in analogous terms with mathematical objects. His attempt is to apply mathematics in the

world of natural phenomena. These remarks suggest that though Galileo is following the

Greek mathematicians, he followed them with a difference. And this difference, we think,

consists in Galileo’s interest in local problems. Let us recollect that Aristotle also thought

that fixing the subject matter is a crucial feature of natural science, contrary to the Platonic

idea of Universal science. Descartes is a Platonist on this issue, while Galileo is not. Both

Descartes and Plato, it well known, are great system builders. They believed and attempted

to systematize science in a architectonic manner. Descartes thought that Galileo’s approach

was piecemeal ; he wanted to construct science not from merely plausible hypotheses but from

indubitable clear and distinct first principles as foundations. He accuses Galileo of having

built mechanics without foundation.

I find that in general he philosophizes much better than the usual lot for he leaves
as much as possible the errors of the School and strives to examine physical

18Peter Machamer in Butts and Pitts op.cit. p. 161.
19Two New Sciences, Crew and de Salvio, p. 160.
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matters with mathematical reasons. In this I am completely in agreement with
him and I hold that there is no other way of finding the truth. But I see a
serious deficiency in his constant digressions and his failure to stop and explain
a question fully. This shows that he has not examined them in order and that,
without considering the first causes of nature, he has merely looked for the causes
of some particular effects, and so has built without any foundation.20

Descartes appreciates Galileo’s inclination to mathematics, but demands greater rigor, for

Galileo did not, as Descartes thought, “stop and explain a question fully.” While it is true that

Galileo did not stay forever in the mathematical world, he cannot be accused for not having

answered or explained a question fully. Insofar as specific contributions towards the science

of motion are concerned, Galileo succeeded better as compared with Descartes. Descartes’

contributions to mathematical analysis are undoubtedly more sophisticated than Galileo’s,

but it is not legitimate to accuse Galileo for his inclination to solve specific problems. One

of the characteristic features of modern science, that comes out clearly in the studies of T.

Kuhn also, is that it develops by attempting to solve local problems. Descartes, we think,

has failed to see the significance of solving ‘petty’ problems.

Towards the end of the above passage, Descartes criticizes Galileo because the latter

looked always “for the causes of some particular effects” without any foundation. Here also

Descartes’ understanding of Galileo has to be questioned. Because for Galileo, the cause-effect

relation is not central, as it is in Aristotle’s physics. He is interested in the mathematical

relationship between the relevant measurable parameters of the phenomena under study.

Traditionally there has been too much emphasis on the cause and effect relation in the philo-

sophical accounts of science, as is evident from the writings of Aristotelians. We will see in

Part-III that the distinction between cause and effect is not central to the Galilean approach.

It is rather well known that Galileo did not so much look for causes of motion, but emphasized

mathematical (functional) relationships between different measurable parameters. Though,

later Newton returns to the question of causes of motion, his notion is functionally defined,

unlike Aristotle’s notion of cause and effect, which none in the 17th century accepted. In a

functionally defined causal relation, the cause and effect can be interchanged, or reversed.

We will see below that this reversibility is due to the invertible relation or symmetry of most

mathematical relations. It is well known that the theoretical knowledge of science has a

meta-theoretical property called symmetry. If theoretical knowledge had been grounded on

Aristotle’s notion of cause and effect which is necessarily asymmetrical, mathematical physics

would not have been possible.

20Letter to Mersenne, October 1638, A.T., II, 380. Quoted in Shea, W.R. 1978.
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Before we look at Descartes joint method, we shall summarize the above discussion.

Galileo defined new objects of scientific knowledge as relational properties of measurable

dimensions—another possible response to the Sophists’ challenge—and accordingly devised a

new joint method, which we have characterized as mixed , for it contained both mathematical

and experimental components. He differed significantly from both Platonic and Aristotelian

thought, and also in a subtle manner from the Greek mathematicians—his thought is unique

and original. His main problem was to find applications of mathematical knowledge to natural

phenomena.

2.2 Descartes

Galileo’s contribution, as observed above, was in convincing people that physical

nature can be quantified, and in making the mathematization of science possible. In that

process he argued for the need of idealization and experimentation for understanding and

validating scientific knowledge. The counterfactual nature of scientific conceptions and the

need of not only physical experiments, but also thought experiments has been brought to

light in his deliberations. Descartes too was not only convinced that physical nature can be

quantified, but actually identified mathematical (geometrical) dimensions with the physical.

[I]t is not merely the case that length, breadth, and depth are dimensions, but
weight also is a dimension in terms of which the heaviness of objects is estimated.
So, too, velocity is a dimension of motion, and there are an infinite number of
similar instances.”21

However, Descartes allowed some distinctions in relating them to actuality and possibility—

physics is to actuality and mathematics is to possibility.

The difference consists just in this, that physics considers its object not only as a
true and real being, but as actually existing as such, while mathematics considers
it merely as possible, and as something which does not actually exist in space,
but could do so.22

Physics, then, becomes applied (actualized) mathematics. This development has far reach-

ing implications for the advancement of modern science. In ancient times multiplication of

dimensions other than geometric or arithmetic are thought to be impossible.23 Unless the di-

mension of, say, mass is multiplied with the dimension of motion (velocity) no quantification

21Quoted in Mason 1956, Main Currents of Scientific Thought: A History of the Sciences p. 132.
22Conversation with Burman (V 160, C p.23), quoted in Bernard Williams 1978, Descartes: The Project of

Pure Inquiry p. 259.
23Bochner 1966, The Role of Mathematics in the Rise of Science,.
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of motion could be achieved in terms other than merely saying that something moves faster

than some other thing. Development of physics without allowing the functional correlation

or covariation (read multiplication) of geometrical dimensions and physical dimensions can

be stated to be impossible. Thus the subject matter of physics and mathematics have found

a common ground, such that they could develop, henceforth, dialectically, if not hand in

hand. Anyone familiar with the development of both mathematics and modern physics after

the 17th century, would not deny that neither mathematics nor physics could have developed

independent of each other. The foundational contribution of Descartes is extremely relevant

for enforcing such a development of both the fields. Since the study of such a development

is a subject in itself, we shall not divert our attention to that here. It is sufficient to observe

here that Descartes’ contributions in working out a common framework for mathematical

physics have been more fundamental than that of Galileo. However, when one looks at the

comparative abilities of finding applications of mathematical knowledge in solving concrete

problems Galileo’s success is more commendable than Descartes. Modern science could not

afford to miss either of them.

Descartes also proposes a joint method of Analysis and Synthesis, which is clearly

conceived as a method of discovering and ordering knowledge. In Regulae he proposes rules

for the direction of the mind. His rules IV, V and VI are as follows: Rule IV: There is a need

of method for finding out the truth.

Rule V: Method consists entirely in the order and disposition of the objects to-
wards which our mental vision must be directed if we would find out any truth.
We shall comply with it exactly if we reduce involved and obscure propositions
step by step to those that are simpler, and then starting with the intuitive appre-
hension of all those that are absolutely simple, attempt to ascend to the knowledge
of all others by precisely similar steps.24

Rule VI: In order to separate out what is quite simple from what is complex, and
to arrange these matters methodically, we ought, in the case of every series in
which we have deduced certain facts the one from the other, to notice which fact
is simple, and to mark the interval, greater, less, or equal, which separates all the
others from this.

Rule V is a clear statement of the joint method of analysis and synthesis. However, we see

that relational knowledge of things is what is sought, and not Aristotelian essences. The

ultimate goal or aim of the analytic regression, as is clear from Rule VI, is not the simple qua

simple but the simple ‘relatively’ to the other terms of the series. Also notice that the ‘series’

does not imply that we are to consider that things or facts can be arranged in a conceptual

24Our italics.
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classification similar to that adopted by the Aristotelians. The series is not a static ontological

classification based on genus and specific difference but an implicatory sequence of antecedent

and consequent in which the important and decisive factor is the logical relation of one to

the other.25 Also to be noted is the use of the term ‘propositions’, and not classes.

Rule VI says that in order to know what is simple and complex, we should arrange

terms in relative and absolute order. Descartes defines an absolute term as one which con-

tains within itself the pure and simple of which we are in quest. Examples of such terms

are independence, cause, simple, universal, one, equal, straight and so on. Relative terms

on the other hand are those which are ‘related’ to the absolute and deducing them involves

something other than the absolute concepts. Examples of such terms are what ever is con-

sidered as dependent, effect, composite, particular, and so on. Note that the terms in the

independent category includes basically primary mathematical terms, and in the dependent

category includes the secondary non-mathematical terms. Thus the method, couched in terms

of analysis and synthesis, tends toward mathematical objects of knowledge, which is about

divisions, shapes and motions.

The method of analysis ultimately reduces the problem by a regressive and gradual

division until we reach a term which is maxime absolutum. From the discovery of the maxime

absolutum the method of synthesis can begin, which is the arrangement of the facts discovered

by analysis, in such an order that they will be successively relative and more concrete terms

of the implicatory series will issue as the solution of the problem.26.

Thus Descartes’ program is to interpret nature in the form of an axiomatic structure

of the whole system, by establishing indubitable foundations and the deducing from them

the rest of the phenomena. Following such a maxim he tried to construct a system, which is

purely mechanical in character, i.e. it employs no principle other than the concepts employed

in mechanics, such as shape, size, quantity, motion etc.

Gradually Descartes realized how difficult was the program he visualized. Later he

not only diluted the rigid architectonic approach of deducing everything from first principles,

he allowed room for hypothetical premisses that are compatible with the first principles in

his system. This point comes out vividly in the study of Larry Laudan (1981), who writes

that:

After trying to deduce the particular characteristic of chemical change from his
first principles (i.e., matter and motion), he concedes failure. His program for the
derivation of the phenomena of chemistry and physics from a priori truths remains

25Beck, L.J. 1952, p. 161.
26Ibid., pp. 167–78
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uncompleted. His first principles are, he admits, simply too general to permit him
to deduce statements from them about the specific way particular chunks of mat-
ter behave. ... Not content to leave anything unexplained, Descartes departed
from his usual devotion to clear and distinct ideas and advocated the use of inter-
mediate theories (less general than the first principles, but more general than the
phenomena), which were sufficiently explicit to permit the explanation of individ-
ual events and which were, at the same time, compatible with, but not deducible
from, the first principles. Descartes recognized that all such intermediary theories
were inevitably hypothetical. Because their constituent elements were not clearly
and distinctly perceived, it was conceivable that they were false. After all, nature
is describable in a wide variety of ways and the fact the an explanation worked
was no proof that it was true. Like any good logician, Descartes realized that
“one may deduce some very true and certain conclusions from suppositions that
are false or uncertain”.27

This development in Descartes turns out to be highly significant for understanding

the role of the method of hypothesis in the later developments of science. This moderately

modified stand also brings Galileo and Descartes closer than before. In the earlier section

we have noted why Marsenne in his letter to Descartes was critical of Galileo. Whatever be

the significance of this later realization in the context of the development of the hypothetico-

deductive methodology, as Laudan tries to stress, the significance of this in the development

of problem oriented (paradigmatic) science, as opposed to architectonic science, should also

be noted.

2.3 Newton

Galileo’s second important successor Newton was closer to him in the sense that

he is also a member of the mixed tradition. He tried to keep a proper balance between

an unlimited confidence in mathematics unchecked by experience, and mere experimenting

unaccompanied by mathematical analysis and demonstration.28 His statements on method,

therefore, sounded much like Galileo. He gave his method more experimental coloring than

Galileo had done, for the latter did not feel the need to check by observation mathematically

deduced consequences. For Newton the logical inclusion of a proposition within a deductive

system was not a sufficient proof of its ‘truth’. As rightly pointed out by Randall, the

experimental analysis of instances in nature forms a part not only of the method of discovery

but also of the verification.29

27Laudan 1981, p. 29. The quotation in the last sentence is from: R. Descartes, Oeuvres (ed. Adam and
Tannery), Paris, 1897-1957, vol.2, p. 199. Italics are original.

28Randall Jr.1962 op.cit. p. 576.
29Ibid.
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In the Opticks appears Newton’s classic statement of the joint method of analysis

and synthesis, with its experimental fervor.

As in mathematics, so in natural philosophy, the investigation of difficult things
by the method of analysis, ought ever to precede the method of composition. This
analysis consists in making experiments and observations, and in drawing several
conclusions from them by induction, and admitting of no objections against the
conclusions, but such as are taken from experiments, or other certain truths, for
hypotheses are not to be regarded in experimental philosophy. And although the
arguing from experiments and observations by induction be no demonstration of
general conclusions; yet it is the best way of arguing which the nature of things
admits of, and may be looked upon as so much stronger, by how much the induc-
tion is more general. And if no exception occur from phenomena, the conclusion
may be pronounced generally. But if at any time afterwards any exception shall
occur from experiments, it may then begin to be pronounced from compounds
to ingredients, and from motions to the forces producing them; and in general,
from effects to their causes, and from particular causes to more general ones, till
the argument end in the most general. This is the method of analysis: and the
synthesis consists in assuming the causes discovered, and established as principles,
and by them explaining the phenomena proceeding from them, and proving the
explanations.30

It may be noted that the term ‘analysis’ is used to refer to the experimental and empirical

context, unlike the modern usage of the term to the logical and deductive context. Accord-

ingly the term ‘synthesis’ refers to deductive proof. The terms are used to refer to the same

contexts as in the Aristotelians of the School of Padua at Italy, as elaborated above. This

terminological inversion, as indicated above, must be due to the later linguistic orientation

of philosophers, specially after Kant. It is typical, for Aristotelians, to consider the effects

or phenomena as complex, therefore to be analyzed until they reach the causes, which are

regarded as simple. The later modern philosophers use the term ‘analysis’ mostly to denote

the logical movement from the more general statements to the more specific statements, while

inductive movement from specific to general statements is regarded as synthetic. This inver-

sion of terms demands historico-philosophical explanation. Again, we are afraid, we cannot

meet the demand here, but must remain content with the observation.

The events mentioned in the method of synthesis, though include induction, are

not mere simple unidirectional inductive movements. But it is characterized as dialectical,

i.e., checking errors and collecting instances, ultimately arriving at the general. It is the well

known view of Newton that in this context hypotheses should not be brought in. So much has

been written, which is ridden with confusion regarding Newton’s cryptic views on the role of

30Opticks, p. 380.
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hypotheses, we shall not add anymore to it. However, it should be noted, that it is typical of

the scholars of that period to believe in only those postulates that are ‘deducible’ from given

experience. If Descartes allowed in the last resort some room for hypotheses, it is not because

it is desirable to have them, but because we have nothing better than them. However the

difference between Newton and Descartes should be noted. Newton wanted that the principles

be ‘induced’ experimentally, while Descartes’ earlier program was to deduce them from the

clear and distinct principles. Thus the nature of the kind of reason they have envisaged is

qualitatively different. Now for Galileo, as elaborated above, the first step was to construct

the definitions, and then the hypotheses. Considering the deficiencies of both inductive and

hypothetico-deductive methodologies that developed, it is Galileo’s position that needs to

be reconsidered. In the view that we are going to defend, constructing definitions will be

considered the first step in the context of discovery.



Chapter 3

The Rise of Consequentialism

3.1 New Objects of Scientific Knowledge

It is usual to contrast Bacon with Descartes, the former being seen as an empiricist,

and the latter as a rationalist. Bacon’s name has become synonymous with inductivism, and

has met with much criticism from various quarters. A quotation from Jevons would tell how

Bacon has come to be regarded:

The value of this method [Bacon’s] may be estimated historically by the fact
that it has not been followed by any of the great masters of science. Whether
we look to Galileo, who preceded Bacon, to Gilbert, his contemporary, or to
Newton, Descartes, Leibniz and Huyghens, his successors, we find that discovery
was achieved by the opposite method to that advocated by Bacon.1

Bacon was very popular with the English scholars, even among those who took mathematics

very seriously, such as Newton. Though Bacon opposed decadent scholasticism and barren

belief in the authority of science, he continued to believe in the Aristotelian objects of knowl-

edge, which consists in qualitative understanding of the nature or essence of things. Ideas

about the nature of science that followed after Bacon, however, did not entertain Aristotelian

objects of science, but undertook to probe for invariant antecedents.

In fact much before Galileo, the new objects of knowledge were developed in the

school of Alexandria by Archimedes, but it took many centuries to apply similar methods to

other physical problems such as motion. Some explanation as to why Archimedean methods

did not take off immediately has been attempted in the case studies. Here we find it necessary

to clarify the nature of knowledge that developed after Bacon, which was already available

in the works of Archimedes. This partially explains why Bacon’s inductive method failed.

1Jevons, p. 507.
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Take Archimedes’ law of the lever: When a two armed-lever is in equilibrium, the

attached weights are inversely proportional to their respective distances from the ‘fulcrum’.

Thus, if one side of the lever is ten times as long as the other, a weight attached to that side

will balance another weight ten times as heavy when placed on the other side of the lever.

Here no reference is being made to “inherent qualities” or Aristotelian essences to describe

the system. Neither is there any talk of any metaphysical ‘force’.

It [The law] expresses a mutual dependency of quantities and nothing more. Even
the distinction between independent and dependent variables is obliterated, and
the relationship which the law defines is completely reversible. In other words,
the law expresses a type of dependency for which the mathematical notion of
“function” has furnished the pattern.2

It should be noted that the pattern of relationship is symmetrical, because of which it is

reversible. In fact we cannot say, except arbitrarily, which is the cause and which is the

effect. What emerges here is an invariant, symmetric, relational, and functional form. This,

we claim, is the character of the objects of scientific knowledge of not only Archimedean

science, but also the science whose development we continue to watch even today. More

examples of this pattern will be presented in the case studies.

Another example from Newton again suggested by Werkmeister in the same context,

is equally telling. The form that emerges from Newton’s law of gravitation expresses mutual

dependency of two masses each one attracting the other. For example, in the case of a falling

stone, the earth attracts the stone, and also the stone attracts the earth.

Gravitation cannot even be defined without reference to at least two bodies. The
attractive “force” is in every case proportional to the masses of the bodies and
inversely proportional to the square of their distances. If this means anything
at all, it must mean that the “force” of gravitation is not “inherent” in any one
thing, but is essentially a relation between things. The “immanent” forces of
metaphysics disappear, and there is left only mathematical proportionality.3

Therefore the new objects of scientific knowledge are based on relational invariance, and is

undoubtedly non-Aristotelian. This knowledge is necessarily not obtained by Baconian in-

ductive methods, for it involves creative abstraction. The role of abstraction is mostly in

creating an affine space in which mathematical knowledge can find application and where

induction has no place. It is in this context, we claim that inversion plays its crucial role

2Werkmeister, W. H. 1940, p. 40. Werkmeister makes these observations in the context of explicating the
functional notion of force that Kepler and latter scientific tradition adapted. We are using his observations
for the general objects of knowledge that science has adapted ever since.

3Ibid.
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and induction fails miserably. If there is one singular achievement of philosophical reflec-

tion on scientific method so far, it is, we think, the limitation of the inductive method in

understanding scientific knowledge.

The Baconian method would have worked if the objects of knowledge were Aris-

totelian, but since the new objects of science contained functional relations inductive method

failed. Thus if Bacon’s methods did not find application in science it is due to the new face

that science took after Bacon.

The nature of the change, as we understand it, consists in realizing newer objects

of knowledge that are not solely based on the thematic division of universals and particulars.

We have noted above that for both Plato and Aristotle episteme constitutes the knowledge

of the universals. We have also observed that the ‘discovery’ of universals can be understood

as a requirement to meet the Sophists’ challenge. Now, the new object of scientific knowl-

edge is not merely a relation between universals, but between two measurable parameters

of a physical phenomenon. Before Plato, and even after him, only unchanging objects were

thought to be measurable, and mathematics was conceived as a science of such objects alone.

Even the Archimedean science (statics) had this limitation of not being able to mathematize

a physical phenomenon that has the character of necessary change, such as motion. However,

after Galileo, it is realized that even changing phenomena can be mathematically understood.

Galileo demonstrated this possibility with epistemological and methodological support. The

discovery of Galilean relativity is indeed the first outcome of the new forms of knowledge.

The character of this new knowledge is to capture the invariance of variable phenomena. It

is no longer statics. Dynamics is the hallmark of the new science.

Earlier, after Plato, the changing objects of knowledge were regarded as a threat to

understand the world around. If it is possible to show that change itself can have a pattern,

change becomes a knowable object. It is in this sense that this new development can be

regarded as an answer to the problem of knowledge that the Sophists raised. This is how

we interpret the nature of the transformation that took place in the 17th century revolution

in science. We will argue below that this change is impossible without inverse reason. The

claim, that this newer form of invariance is not solely based on the relation between universals

and particulars will become clear in Part-II.

After this transformation in science the discussion on whether scientific methodology

should be Baconian or Cartesian (empiricist or rationalist) continued for a long period. We

cannot go into the details of the events that followed after the 17th century. However we find

it necessary to discuss the general nature of the interesting and highly significant changes
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that took place after the 17th century. Since we are not in agreement with the historico-

philosophical observations of Karl Popper, Imre Lakatos, and Larry Laudan on the history of

methodology after 17th century, we shall present below a critical discussion, which will also

contextualize the problem of the thesis. The general theme of all the three philosophers is

the rise of consequentialism, and the fall of infallibilism.

3.2 The Fall of Infallibilism

We shall start this section by considering certain historical remarks by noted philoso-

phers of science, Popper, Lakatos, Laudan and others, specially concerning the period just

outlined.

Karl Popper provides an interesting interpretation of the history of epistemology

in his essay ‘On the Sources of Knowledge and of Ignorance’ (1962). According to him, an

important and great movement of liberation started in the Renaissance which was inspired

by unparalleled epistemological optimism. At the heart of this optimism lay the doctrine

that truth is manifest . This movement was characterized by the rejection of authority.

The birth of modern science and modern technology was inspired by this op-
timistic epistemology whose main spokesmen were Bacon and Descartes. They
taught that there was no need for any man to appeal to authority in matters of
truth because each man carried the sources of knowledge in himself; either in his
power of sense perception which he may use for the careful observation of nature,
or in his power of intellectual intuition which he may use to distinguish truth
from falsehood by refusing to accept any idea which is not clearly and distinctly
perceived by the intellect.4

Descartes’ basis was the theory of the veracitas dei , the truthfulness of God. “What we clearly

and distinctly see to be true must indeed be true; for otherwise God would be deceiving us.

Thus the truthfulness of God must make truth manifest.”

On the other hand Bacon’s basis was the doctrine of the veracitas naturae, the

truthfulness of Nature. “Nature is an open book. He who reads it with a pure mind cannot

misread it. Only if his mind is poisoned by prejudice can he fall into error.”5 Thus Descartes

and Bacon did not remove authority altogether, instead they replaced one authority, that

of Aristotle and the Bible, by another. Bacon appealed to the authority of the senses, and

Descartes to the authority of the intellect.6

4Popper 1962, p. 5.
5Ibid., p. 7.
6Ibid , pp. 15-16.
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While being highly critical of this optimistic epistemology, Popper acclaims it for

having rejected textual authority.

It encouraged men to think for themselves. It gave them hope that through
knowledge they might free themselves and others from servitude and misery. It
made modern science possible ... It is a case of a bad idea inspiring many good
ones.7

Popper rejects both theses: neither observation nor reason can be authoritative or dependable

sources of knowledge. However, this rejection has not led to the formulation of a third

alternative source of knowledge. His point is that there exists no dependable source of

knowledge. Briefly put, truth is not manifest.

Imre Lakatos makes similar observations about the history of epistemology. He

thinks that there is a common feature of all the accounts of knowledge given until the period

of Newton. This common feature is infallibilism. What Lakatos is trying to convey with

‘infallibilism’, has been conveyed by Popper using the expression ‘the belief that truth is

manifest’. Lakatos restates what Popper has said in terms of language oriented expressions.

While empiricists believed in the truth of factual statements, intellectualists (rationalists)

believed in the truth of general statements (first principles). He observes that Descartes,

Newton and Leibniz all agreed that one can indubitably intuit truth and/or falsehood at both

points; on the level of facts and on the level of first principles. He further makes the point

that highlights the common theme shared by traditional epistemology, which is that neither

factual statements nor first principles taken in isolation can be said to be true.

They [first principles] are only respectable and suitable candidates for truth or
falsehood if they are already embedded in the circulatory system of analysis-
synthesis. Basic statement is meaningless outside analysis-synthesis.8

The truth of a proposition in an analytico-synthetic framework depends on how

it is linked or related to the set of accepted or known beliefs. If it cannot be logically

connected (whatever ‘logical connection’ may mean), the truth of that proposition is not

secured. Commenting on this classical theme of analysis-synthesis, Lakatos says that the two

methods link known and unknown together by a chain of deduction. When truth or falsehood

is injected at some point of the analysis-synthesis circuit, it gets transmitted to every part of

the circuit.9

7Ibid , p. 8.
8Lakatos 1978, op.cit. p. 77.
9Ibid , p. 76.
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The general criticism of these traditional forms of analytico-synthetic methodology is

that the latter component of the method becomes redundant. Because if there exists a definite

source, or method, to arrive at true propositions, there remains no reason to reestablish their

truth by another validating or proving method. Since at that time the propositions of science

were considered infallible, nothing more can be achieved by returning to the starting point.

That is, the process of proof does not give any extra epistemological warranty.

A few other interesting reasons for the untenability of the traditional epistemolog-

ical framework have been ‘excavated’ by Larry Laudan. Laudan first makes the observa-

tion that soon after the 17th century the nature of science began to change necessitating

a corresponding change in the scientific methodology. The change lies in the rise of the

hypothetico-deductive methodology. He then gives an explanation as to why hypothetico-

deductive methodology became “the ruling orthodoxy in the philosophy of science and the

quasi-official methodology of the scientific community.”10 First, we shall summarize his po-

sition, followed by a discussion.

The method of hypothesis consists in validating an hypothesis by ascertaining the

truth of all of its examined consequences. It was espoused in the middle of the 17th century

by Descartes, Boyle, Hooke, Huygens, and the Port-Royal logicians. It fell in disfavor by the

1720s and the 1730s because of the fallacy of affirming the consequent.

[M]ost scientists and epistemologists accepted the Baconian-Newtonian view that
the only legitimate method for science was the gradual accumulation of general
laws by slow and cautious inductive methods. Virtually every preface to ma-
jor scientific works in this period included a condemnation of hypotheses and a
panegyric for induction. Boerhaave, Musschenbroek, ’Gravesande, Keill, Pem-
berton, Voltaire, Maclaurin, Priestley, d’Alembert, Euler, and Maupertius were
only a few of the natural philosophers who argued that science could proceed
without hypotheses, and without need of that sort of experimental verification
of consequences, which had been the hallmark of the hypothetical method since
antiquity.11

The methods of inductive inference and analogical inference alone were considered capable

of generating reliable knowledge. Later,

the self-same method of hypothesis which was so widely condemned by 18th-
century epistemologists and philosophers of science was, three generations later,
to be resurrected and to displace the very method of induction which the philoso-
phers and scientists of the Enlightenment had set such store by.12

10Laudan 1981, Science and Hypothesis, p. 1
11Ibid , p. 10.
12Ibid.
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A number of methodologists of the 1830s and the 1840s such as Comte, Bernard, Herschel,

Apelt, Whewell and Dugald Stewart acknowledged that the method of hypothesis was more

central to scientific inquiry than induction, while Mill conceded that the method had a vital

role without erasing the role of induction in scientific inquiry.

This about-turn, which effectively constitutes the emergence of philosophy of
science as we know it today, is clearly of great historical importance.13

Laudan’s explanation runs as follows. While most scientists and methodologists were con-

tent with inductive generalizations from experimental data for the construction of Galilean

or Newtonian mechanics, many other areas of inquiry, such as electricity, heat, organic and

phlogiston chemistry, etc., did not readily lend themselves to such an approach.14 It was soon

realized that “the types of theories they were promulgating could not possibly be justified

within the framework of an inductivist philosophy of science. Since there was no way to recon-

cile an inductivist methodology with such highly speculative theories about micro-structure,

scientist-methodologists such as, George LeSage, David Hartley and Roger Boscovich, work-

ing in their respective areas, chose to develop an alternative epistemology and methodology

of science, rather than abandon micro-theorizing. These views developed in the course of,

and as a result of, epistemic criticisms directed against the speculative theories proposed by

them. Further strength to this initiative was given by Jean Senebier, Pierre Prevost, Dugald

Stewart, Herschel and Whewell.15

One commendable achievement of Laudan in tracing the historical development of

the hypothetico-deductive method is that the method emerged out of the problems faced

by the working scientists. The source of modern methodology has not been pure the philo-

sophical context. Perhaps it has never been. Previous to this specialist era the distinction

between working scientists and philosophers was difficult to make. Therefore, not only the

modern methodology, but also the traditional methodology, with the exception of possibly

Bacon, emerged out of the intellectual struggle of philosopher-scientists, rather than pure

philosophers.

It was observed above that the change brought about in the objects of knowledge

necessitated the development of appropriate methodologies. Never in the history of philos-

ophy, was the question of methodology raised without a prior statement about what the

objects of knowledge were. All the views elaborated above have had a specific perspective on

what constitutes scientific knowledge. Therefore, if this observation is correct, the definite

13Ibid, p. 11.
14Ibid, p. 12.
15Ibid., pp. 12–15.



3.2. The Fall of Infallibilism 67

role methodology could play would depend mostly on how well defined are the objects of

scientific knowledge. If we have a clear taxonomy of the objects of knowledge, possibly we

can also have a corresponding taxonomy of methodology. In the contemporary situation,

however, nothing can be asserted with certainty about the possibility or impossibility of an

exhaustive account of the nature/taxonomy/structure of scientific knowledge, and therefore

no corresponding assertions are possible regarding the nature/taxonomy/structure of scien-

tific methodology.

In the explanation given by Laudan, one reason for bringing in the method of hy-

pothesis comes out very clearly, which is the nature of the micro-sciences as against the

macro-sciences. Macro-sciences, according to Laudan, “deal with properties and processes

which can be more or less directly observed and measured.”16 And micro-sciences deal with

unobservable phenomena. Galilean mechanics, and Copernican astronomy are given as ex-

amples of macro-science, while optics, chemistry, physiology, meteorology, and pneumatics

etc. are given as examples of micro-science. According to Laudan, the sciences that come

under the macro-sciences are not the source of philosophical problem and are not responsible

for the transformation that gave rise to hypothetico-deductive methodology.

Laudan argues that Alexandre Koyre’s view, that Galilean mechanics posed a pro-

found challenge to the Aristotelian empiricist epistemology, is incorrect.

If we take Aristotelian epistemology to be summed up in the dictum “nothing is
in the mind which was not first in the senses”, there is little in Galileo’s science
of motion which need to be taken as challenging that epistemology. This is not
to suggest, of course, that Galileo’s own methodology was derivative from Aris-
totle’s. Serious scholars continue to fight that one out. What is being claimed
is that Galilean mechanics could be (and sometimes was) regarded as posing no
acute threat to the theory of scientific methodology advocated (say) in Aristo-
tle’s Posterior Analytics. If the whole of 17th-century science had exhibited the
largely phenomenological character of Galileo’s mechanics, there need have been
no revolution in methodology.17

The real threat, according to Laudan, is due to the micro-sciences, as mentioned above. He

argues that although micro-sciences “address themselves to the observable phenomena, the

theories themselves postulated micro-entities which were regarded as unobservable in prin-

ciple.”18 This feature of micro-sciences was philosophically disturbing due to “the radical

observational inaccessibility of the entities postulated by their theories”.19

16Ibid, p. 21.
17Ibid, p. 21.
18Ibid, p. 22.
19Ibid.
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Laudan’s linking of empirical epistemology with Galileo becomes very clear in the

following passage.

Earlier epistemologists of science Aristotle to Bacon had maintained that scientific
theories could be elicited from nature by a careful and conscientious search for the
“universals inherent in the particulars of sense’’. Precisely because Galilean
mechanics could be (and often was) regarded as a natural extrapola-
tion from sensory particulars, it posed few problems for the traditional
epistemology of science.20

Thus he sees no threat to traditional methodology from Galilean science. This we shall argue

is an incorrect view, while we agree with him that micro-sciences indeed threaten the tradi-

tional empiricist epistemology. First, let us recall from the above account that for Galileo

the objects of scientific knowledge, as well as methodology are clearly different from both

Aristotle’s and Plato’s. We have also remarked that Bacon’s methodology can do good for

Aristotelian objects of knowledge, but not for the Galilean. Therefore it is necessary to un-

derstand how a change in the objects of knowledge have not produced a corresponding change

in methodology. In fact, it is one of the significant claims of Laudan that methodological

choices are determined by the nature of science. A number of questions would naturally

arise. If there existed no change in the nature of science then why have Galileo’s contribu-

tions given rise to a revolution? And if there existed a change in the nature of science, then

why couldn’t that pose a threat to Aristotelian/Baconian methodology? Can the traditional

Aristotelian methodology attend to the essentially mathematical objects of Galilean science?

If there exist no problems in ‘constructing’ or ‘reconstructing’ Galilean science from experi-

ence, then why does the conceptual transformation from Aristotle to Galileo still constitute

a major philosophical and methodological problem? Scholars still dispute over questions of

the following kind: Who influenced Galileo, Plato or Aristotle? Is it the Italian Aristotelians

or neo-Platonists that made the revolution possible? These questions cannot be satisfac-

torily tackled here, we can confidently claim that Galilean science is qualitatively distinct

from Aristotelian and also Platonic science, and Aristotelian methodology cannot account

for Galilean science.

We have seen above that Galilean science ‘starts’ with a suppositional (hypotheti-

cal) definition of a state of motion, namely uniform acceleration. It is not possible to arrive

at such a theoretical definition from experience, as we never do find an object with uniform

acceleration. It is an ideal and not a real state. One might say that the Baconian starting

point is experimental experience and not ordinary sense experience, where uniform accelera-

20Italics are original, while boldface is ours. p. 23.
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tion could be actually seen. How would one get the motivation to construct an experimental

setup where uniform acceleration can be realized, without a prior definitional knowledge of

what that ‘state’ (setup) would be? No experiment is ever conducted without some theoret-

ical background and motivation. If Galileo really conducted experiments on inclined planes,

pendulums, etc., the objective was not to arrive at the definitions, but to find confirmation

for the mathematically deduced theorems from theoretically constructed definitions. Some

one like Galileo, who gave a secondary role to experimental verification, can not be equated

or seen as posing no threat to Baconian methodology. Recall what he says regarding exper-

imental verification: experimental verification is to satisfy those who do not understand the

mathematical subtleties. For an expert in mathematical reasoning the theorems are already

proved mathematically.

It is also not true that Galilean science posits no ‘objects’ which are inprinciple

unobservable. Without a notion of vacuum or void, which is undoubtedly unobservable

inprinciple, the Galilean law of the fall of bodies could not be possible. Galileo gave detailed

arguments and proofs to demolish Aristotelian opposition to the notion of vacuum. Detailed

arguments of Galileo are presented in the Chapter 8.

There are also certain notions which have first been constructed by reason and then

‘observed’. For example, when Galileo supposes that a floating body is like one of the weights

of a balance, while the other weight is that theoretically delimited portion of liquid which

is displaced by the body, he is clearly creating or constructing an entity. This construction

is not exemplifiable in Aristotelian/Baconian methodology. The notion of the other weight

that scientists have supposed has been constructed theoretically. Since we have elaborated

them in the case studies we will not dwell on the example in detail here.

Therefore Laudan is incorrect in saying that Galilean science poses no threat to

Aristotelian/Baconian methodology. He could have merely stated that later 17th-century

micro-sciences posed a relatively greater threat than Galilean science could. This modified

position is what we will defend in this thesis.

Another point needs to be stated. While Laudan’s explanation to the rise of

hypothetico-deductive methodology, with the modification just suggested, is justifiable, his

later conclusion that the generativism has been abandoned to the point of no return will be

contested. As indicated in the introduction our thesis can be viewed as a response to the

challenge Laudan poses. This brings us to one of the specific problems of the thesis, which is

dealt with in Part-II.
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3.3 The Rise and the Fall of Logical Positivism

We have looked at certain factors that gave rise to consequentialism and the method

of hypothesis. It is observed that simple inductive methods could not account for the discovery

of highly theoretical, mathematical and unobservable aspects of scientific knowledge. Most

scientific theories, being very far from sensory experience, could not be justified by any direct

method. The only available method of justification is to test the relatively direct observable

consequences deduced from the hypotheses which are often counterintuitive. However, this

is only part of the story. The belief in inductivism did not vanish from philosophy of science

altogether.

In the beginning of this century, a considerably influential group of philosophers,

mostly Germans, began a movement called Positivism. They rejected metaphysics and were

concerned with the reduction of all scientific statements to statements about sensation, seek-

ing complete empirical verification. Early versions of Positivism are found in Herman Co-

hen’s and Ernest Mach’s neo-Kantian philosophy of science. Cohen characterized scientific

knowledge as an underlying structure (form) of sensations that are exemplified in sensory ex-

perience. E. Mach viewed science as an abbreviated description of sensations. However, these

attempts were unsuccessful, because of the abundance of mathematical relations occurring

in scientific principles which could not be reduced to sensations.

An intellectual crisis in philosophy of science developed after the turn of the century

as a result of the development of Einstein’s theory of relativity, and quantum theory. Ein-

stein’s theory involved notions that required a high degree of mathematical sophistication,

while quantum theory began postulating entities that are in principle unobservable. These

new theories were found to be incompatible not only with the then prevailing philosophies

of science, but also with classical physics. Initially most German philosophers opposed the

replacement of classical physics by relativity and quantum theory.21 The only school that was

sympathetic to the new physics was a modified position of Machian Positivism. Ernst Cassirer

also attempted to accommodate the new physics in a modified neo-Kantian philosophy.22

The Berlin school under the influence of Reichenbach and the Vienna school under

21We think that most philosophers and scientists misinterpreted the place of the new theories such as theory
of relativity, and quantum mechanics. The idea that they would replace the prevailing classical theory was
based on the view that the new developments are alternative world views. Here lies the major cause, according
to to our diagnosis, of generating the problem of growth and development of scientific knowledge. We tend to
believe that there was never a need to replace one theory with the other. The reasons for replacement were
based on a lack of clear characterization of what scientific theories are. We have argued in Chapter 5, that
the ‘dislodgement’ of a theory might have taken place only in the ‘minds’ of some of the scientists, and not
from the scientific community at large.

22Cassirer 1923, Substance and Function and Einstein’s Theory of Relativity.
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the influence of Moritz Schlick agreed with Mach on verifiability as a criterion of meaningful-

ness for theoretical concepts. However, they did not agree with Mach on the place given to

mathematics. One aspect of this development is Conventionalism of the Poincaré kind. Both

theoretical as well as mathematical terms occurring in scientific statements are interpreted as

conventional abbreviations that can be eliminated by expansion’ into equivalent statements

in phenomenal language. What came handy to these new developments, largely as a cata-

lyst, were the logico-mathematical contributions of Frege, Cantor, Russell, etc. The program

announced in Russell and Whitehead’s Principia Mathematica was to provide foundations

for mathematics in logic. This development suggested a promising possibility of accounting

for the mathematical and theoretical terms of scientific knowledge in terms of logical and

observational (phenomenal) vocabulary (language). Thus came into being the philosophy of

Logical Positivism. It may also be said that this is also the birth of modern philosophy of

science, which remained the official philosophy till the late fifties.

It is worthwhile to compare the Kantian problematic with that of the Positivist’s

problematic, to understand the nature of the changing views about science. Kant’s major

problem can be stated to be the problem of showing the possibility of synthetic a priori

knowledge, which includes natural science, arithmetic and geometry, as well as metaphysics.

It was Kant’s original idea of synthetic a priori judgements that shaped many philo-

sophical schools after him. Kant’s philosophical system has been a rich source of ideas for

both philosophers and scientists alike. According to Alberto Coffa “the early stages of logi-

cal positivism may be viewed as a development to the point of exhaustion of this aspect of

Kant’s original idea.”23 Coffa’s attempt is to understand the development of Positivist views

on meaning from Kant onwards. One of the traditions that developed from Kant, according

to Coffa, is the semantic tradition. The problem of the semantic tradition was

the a priori; its enemy, Kant’s pure intuition; its purpose, to develop a conception
of the a priori in which pure intuition played no role; its strategy, to base that
theory on a development of semantics.24

This recent work of Coffa demands serious attention, for it involves deeper issues for which,

we have no space here. Therefore we shall be satisfied with a cursory comparison, which

provides sufficient indications regarding the nature of the change that took place. We shall

point out the essential connections between Kantianism and Logical Positivism on the other,

followed by a summary of criticisms leveled against the latter leading to the modern version

of consequentialism.
23Coffa 1991, The Semantic Tradition from Kant to Carnap p. 7.
24Ibid, p. 22.
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Kant’s problem was to to show: “How are synthetic cognitions a priori possible?”25

Scientific knowledge is a synthesis of both form and content, or in other words it is a collection

of informative forms. Undoubtedly Kant discovered a very original way of characterizing a

category of knowledge that includes physics, metaphysics, and mathematics. Logic, according

to him, is part of knowledge that is based entirely on the principle of non-contradiction, and

therefore is on certain ground posing no further problem.

Kant’s solution to his own problem consists in showing that all synthetic judgements

are mediated by a concept, which is a higher representation instead of an immediate represen-

tation, that can hold many possible representations. Conceptual means of knowledge, which

Kant calls discursive, yields the objective ground of the possibility of experience.26 When

the subject encounters an object by intuition, an illustration of the predicate, that the sub-

ject has a priori , is realized. Categories of understanding, such as space and time, are pure

intuitions which contain a priori the conditions of the possibility of objects as appearances.

Thus Kant attempts to show that independently of all experience, a priori, the

categories of understanding make possible synthetic knowledge of objects.27

Kant’s epistemology gains significance because he posed a problem regarding the

possibility of pure science, which was just beginning to emerge in a major way after math-

ematical methods of doing such a science were developed by Newton and Leibniz. Whether

Kant was successful or not continues to be a debate till this day, but he posed an original

problem for philosophers of science, one of utmost importance. Later in the 19th and 20th

centuries, developments in science according to our understanding, vindicate in a major way

the involvement of synthetic knowledge a priori , in what is known by the name of “theoret-

ical physics”. Theoretical physicists define a number of ‘predicates’ attributable to possible

experience by constructive methods.

A striking difference between the Kantian and Positivists’ characterization of scien-

tific knowledge is that the latter eliminated metaphysics as meaningless. One must also note

that the position of mathematics in the Positivist’s framework, lies in the analytic form of

knowledge, and not in the synthetic as in Kant.

The anatomy of scientific knowledge, according to the Logical Positivists, can be

constructed out of three components.28 (1) Logical and mathematical components (2) theo-

retical components and (3) observational component. (1) is considered analytical and ‘true’

25Prolegomena to Any Future Metaphysics, Section 5.
26Ibid , B 93 - 94, B 127.
27Ibid , B 117 - B 124.
28Positivists considered scientific theories as axiomatic formulations in a mathematical logic L. This formu-

lation appears below.
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or ‘false’ by virtue of its form, (3) is considered synthetic, consisting of phenomenal observa-

tions, which is true or false by virtue of its ‘correspondence’ with the phenomena, obtained

purely by experience. The problematic component here is theoretical statements which was

initially regarded as abbreviations for phenomenal descriptions conventionally decided on.

Since theoretical terms, if they are abbreviations, can be expanded to a set of sentences

that can be reduced either to logico-mathematical terms (1), or to observational terms (3),

the actual components of scientific knowledge are either analytic or synthetic, for the third

component can be eliminated. Thus positivists’ characterization of the body of scientific

knowledge in terms of Kantian distinctions is clear.

As mentioned above the mathematical component becomes analytical with Posi-

tivism. The suspected ground for doing so, as mentioned above, is the Russelian logicism

that mathematics can be founded on logical grounds. We know today that this project, so far,

is unsuccessful. Arithmetic, considering it as one of the essential components of mathematics,

could not successfully be explained purely in terms of logic. The problem is more acute with

other branches of mathematics such as geometry. That various kinds of geometries ‘refer’

to different kinds of spaces, and that different kinds of numbers can gain significance only

under geometrical interpretation, shows that mathematical objects are not totally devoid of

informative content, therefore not altogether analytic. The failure of demonstrating the pure

analytical character of mathematics also demonstrates that mathematics, unlike logic, cannot

be grounded on the principle of contradiction alone. In spite of this failure people still con-

sider mathematics a sure instance of the analytical component of knowledge. Undoubtedly

mathematics shows structures (forms) that can be validated without recourse to experience.

However, the aspect of construction, and abstraction that is involved in it cannot be con-

strued as anything that can be based on the axioms of any pure logical system based on the

principle of non-contradiction, and the principle of excluded middle alone. Which principle

of logic can account for these typically mathematical characters? We think, none.

The place of mathematics is not the only source of the problem with Logical Pos-

itivism. There are a number of problems of which we shall examine some relevant ones in

relation to the problem of structure of scientific knowledge and methods of validating scientific

knowledge. Before we look at other problems it is necessary to say that after the formalist

school developed the analytic nature of mathematics is taken more or less for granted. Var-

ious criticisms directed against Positivism did not make this failure a major point against

Positivism. Another belief that is connected with the formalist view is that anything axiom-

atized or axiomatizable is analytic. Geometry was considered a paradigm case of analytic
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knowledge. Many attempts at axiomatizing different branches of sciences by the Positivists

have been carried out to demonstrate that they can be reconstructed as logical calculi, to

further support their views on the structure of scientific theories. The idea is that there is

nothing more to the different natural sciences except the different specific/local interpreta-

tions the terms occurring in the calculi would have. If this could be achieved then their thesis

about the basal structure of scientific knowledge stands more or less vindicated. Most such

projects have remained mere dreams with little or no success.

We shall first look at the usual objections raised against the Positivist model and

see how the Positivists themselves have made room for consequentialism in spite of an initial

robust inductivism.

A summary presentation of the Positivist’s view of scientific theories as presented

by F. Suppe displays almost all the essential features of the view. The following conditions

are proposed for any scientific theory formulated in a mathematical logic L:

(i) The theory is formulated in a first-order mathematical logic with equality, L.

(ii) The nonlogical terms or constants of L are divided into three disjoint classes
called vocabularies:

(a) The logical vocabulary consisting of logical constants (including mathe-
matical terms).

(b) The observation vocabulary , VO, containing observation terms.

(c) The theoretical vocabulary , VT , containing theoretical terms.

(iii) The terms in VO are interpreted as referring to directly observable physical
objects or directly observable attributes of physical objects.

(iv) There is a set of theoretical postulates T whose only nonlogical terms are
from VT .

(v) The terms in VT are given an explicit definition in terms of VO by corre-
sponding rules C—that is, for every term ‘F ’ in VT , there must be given a
definition for it of the following form:

(x)(Fx = Ox)

where ‘Ox’ is an expression of L containing symbols only from VO and pos-
sibly the logical vocabulary.29

As already mentioned the problematic elements of the view are theoretical terms. The the-

oretical terms present in a theory, it was believed, can be shown to be cognitively significant

on the basis of the criterion of verifiability, which is also their criterion of meaningfulness.

Metaphysics was denied cognitive significance because the criterion of verifiability

excludes it. For a term to have cognitive significance it must be either analytic or synthetic.
29Suppe 1977, op.cit. pp. 16–17.
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Since metaphysics can be neither proven true or false by means of experience, nor can be

shown to be true by mere form of the propositions or by meaning alone, it is denied any

cognitive significance. Though Kant and the Positivists held a similar distinction between

analytic and synthetic elements of knowledge the former did not deny the possibility of

meaningful metaphysics, while the latter denies it. Thus both meaning and truth are decided

by the same criterion of verifiability. Though semantic theories based on Tarski’s suggestion

have been developed that would avoid such a collapse of meaning and truth, not so much

use of these developments has been employed, until recently, by philosophers of science. The

semantic approach in the philosophy of science is fast developing into a coherent framework

that accounts for the nature of scientific knowledge. We will defend below a version of the

semantic approach.

Since it is the correspondence rules that are meant to provide cognitive significance

to theoretical terms, the search for proper correspondence rules ultimately determines the

success or failure of the Positivist model.

In the initial proposal the correspondence rules were thought to be explicit defi-

nitions. It was soon realized by Carnap that dispositional terms cannot be given explicit

definition using observational vocabulary and first-order predicate calculus. No techniques

of modal logic were developed at the time to interpret sentences containing dispositional

terms as subjunctive conditionals. P.F. Bridgman made the proposal that every theoretical

concept is synonymous with the corresponding set of operations. He called such definitions

operational definitions. Operational definitions, too encountered difficulties with disposi-

tional terms. They also faced another problem called proliferation of concepts, which is due

to the possibility of many different sets of operations corresponding to an otherwise single

concept. Unless a more general notion is available that can cover the various sets of opera-

tions for a given concept, the operational definition cannot be considered a definition at all,

for a definition must be both necessary and sufficient.

Later the conditions imposed on correspondence rules were relaxed by the Posi-

tivists, having realized that they cannot be regarded as definitions, for it is very difficult to

obtain necessary and sufficient conditions. In place of any definitions Carnap (1936-37) intro-

duced reduction sentences. Reduction sentences also provide definitions but only partially .

The theoretical (dispositional term) term ‘fragile’, for example, would have the following form

of reduction sentence: “Any body be called fragile if it is struck at a given time, then it will

break at that time, iff it is fragile”. What this sentence stipulates is a condition under which

such an effect is possible, without completely defining the term. We will not come to know
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what it is for something to be fragile. Thus it is no longer required that correspondence rules

provide complete definitions, but only partial definitions for theoretical terms.30

A very important change in the view, of course by further weakening the idea of

cognitive significance, was suggested by Carl Hempel (1952). He argued that since theoreti-

cal terms are never, and cannot be introduced by reduction sentences based on observables,

but are introduced jointly by setting up a theoretical system formulated in terms of the-

oretical terms, what can be and what needs to be provided are only unique observational

consequences of theories involving such terms. It it is not necessary that each such term

be individually defined. Thus it is sufficient to grasp that the empirical manifestations of

a theoretical construct/entities follow the pattern suggested by the theory explaining and

predicting the observable phenomena. Hempel also proposed the well known covering-law

model of explanation/prediction. This is the beginning of a new era of Positivism based on a

consequentialist notion of cognitive significance. Ultimately all claims of acquirability of sci-

entific knowledge by only direct/inductive means from observational source was abandoned.

At around the same time Karl Popper proposed a proposed a stronger consequentialist view

of science than Hempel, by totally abandoning all traces of inductive method. It may be

noted here that those who held a instrumentalist view of theories attempted to eliminate or

dispense with theoretical terms, while those who held a realist view of theories attempted to

provide an ontological basis by accounting for theoretical terms/entities.31

The account so far shows how the development of consequentialist manner of sup-

porting theories has taken place by successively weakening the load on cognitive significance.

According to to Positivists only either analytical or synthetic truths are cognitively

significant. According to Carnap analytic statements are those that are true in virtue of

their logical forms, and the meanings of the logical and descriptive terms occurring in them.32

Carnap gives a positive characterization of synthetic, unlike Kant, who characterizes synthetic

as that which is not analytic. It is clear that the Positivist view of cognitive significance is

based on the distinction between the analytic and the synthetic. Therefore, if the distinction

is untenable the Positivist views would also be in serious trouble.

One famous objection to the distinction is provided by Quine (1953). Of the two

aspects of analyticity, one is by form and the other is by meaning, of which the latter notion

is problematic. Firstly, its problem lies in the fact that analyticity is based on another

more unclarified notion called synonymy, because all statements that are analytic in virtue of

30Cf. F. Suppe 1977, op.cit. pp. 18–22.
31Cf. Suppe, ibid , p. 35.
32Carnap 1966, Philosophical Foundations of Physics p. 259.
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meaning can be transformed into analytic statements in virtue of form by proper substitutions

of synonyms. Secondly, Positivism also holds the verification theory of meaning, according

to which the meaning of a statement is equivalent to the method of confirming it. On this

account, a statement that is analytic in virtue of meaning can only be that which is true

“come what may”. Thirdly, Quine challenges the view that each statement, even if it is

about the world, can stand before the tribunal of experience individually.33

Though H. Putnam agrees that there is a distinction, he says that there is a large

class of statements in natural science which are neither analytic nor synthetic.34 Putnam,

however, allows the possibility that analytic statements can become false if there occurs a

change in the meaning of the constituent terms in the statement. The middle category accord-

ing to Putnam consists of law cluster concepts, such as kinetic energy, principles of geometry

etc. Since these concepts can be denied without change in their extensional meaning, they

cannot be analytic. These principles cannot be thrown out by any isolated experiment or

verified by inductive means. Since these principles are always applied in conjunction with

certain other principles, the trouble could be with the combination, rather than with the

principles as such. Therefore they are not synthetic either. Since a large number of defini-

tions/principles/laws of highly developed science are of this kind, which are neither analytic

nor synthetic, the traditional watertight distinction cannot be put to use to understand the

nature of modern science.

Putnam’s arguments have serious consequences for the future of the Positivist view

of science. Putnam does not deny the distinction, but he has, we think, shown successfully

that being able to distinguish the two categories has little consequence, if any, for understand-

ing the nature of scientific knowledge, because a large part of scientific knowledge belongs to

the class of definitions. That a large part class of scientific knowledge cannot be validated by

empirical (synthetic) means introduces further problems to Positivism.

If it is true that the objects of scientific knowledge consist in this new class of

definitions, then there should exist a corresponding methodology, which is neither deductive

nor inductive. In the thesis being developed we attempt to show that the method of validating

scientific knowledge has to be neither inductive (synthetic) nor deductive (analytic). For

more precise characterization of the proposed structure of scientific knowledge we will have

to wait.35

33Quine 1953, From A Logical Point Of View p. 41.
34Grice and Strawson (1956) also argued for a similar position, but on grounds and motivations different

from Putnam. Since Putnam’s ‘middle’ category is relevant for latter discussions we considered Putnam’s
rather than Grice and Strawson.

35A few other influential views were developed by Ernst Nagel, Braithwaite and Mary Hesse. One common
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Independent of the above source of problems for the Positivist views, Karl Popper

claimed that we can deny all modes of validating scientific knowledge by means of generatabil-

ity. He rejected the method of verification as a criterion of cognitive significance based on the

Humean line of invalidating inductive justification. He argued that scientific theories/laws

cannot be verified by means of accumulating observational evidence. However, scientific the-

ories/laws can be falsified by observational means. He, thus, introduced a new criterion of

scientificity.

Popper argued against the observation/theory distinction, which is one of the basic

presuppositions of the Positivist view. Against this distinction he argued that all observations

are theory laden. His arguments in this regard also form an attack on the generationists in

general. It is based on the thesis of the theory-ladenness of observations. This is targeted

against the generationists’, specially the inductivists’ belief that induction enables them to

infer mechanically true scientific theories from an exhaustive collection of facts gathered

without any theoretical preconceptions. Criticizing inductivism, Popper says:

I believe that theories are prior to observations as well as to experiments, in the
sense that the latter are significant only in relation to theoretical problems ... I
do not believe, therefore, in the ‘method of generalisation’, that is to say, in the
view that science begins with observations from which it derives its theories by
some process of generalization or induction.36

Popper uses a metaphor to describe the two traditional positions in Objective Knowledge

(1972). He says our mind is not an empty ‘bucket’ as traditional empiricists had thought,

which can be filled by making a number of observations. Rather it is like a ‘search light’

projecting theories on the world around selecting observations.37

Carl Hempel also expresses the view that without a prior tentative answer (hypoth-

esis) to the problem under study, one would not know which facts are relevant to the inquiry,

and the set of all the facts is not exhaustive.38

We think that theory-ladenness of observations should not be considered a valid

objection against a logic of discovery or generationism in general, though it is a valid objection

against the inductive view of arriving at theories. Reasons are elaborated below in Chapter 4.

theme of these philosophers of science was to understand the structure of scientific theories based on the notion
of a model. A model provides an interpretation to an uninterpreted formal calculus. A model for a theory
is that in which the theory is true. These views are developed to provide an independent support for the
non-observational component of a scientific theory, over and above the partial interpretation views mentioned
above.

36Popper 1957, p. 98., our italics.
37Peter Medawar makes the same point in a different way: “We cannot browse over the field of nature like

cows at pasture . . .” Cf. Medawar 1969, p. 51.
38Hempel 1966, Philosophy of Natural Science pp. 12–13.
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It should be noted that though Popper’s falsificationism was not free of problems,

it could command a large following.39 This would be partly due to Popper’s ability to

successfully divert the attention of philosophers of science from the problem of canonical

formulation of scientific theories based on formal and linguistic methods to the problems

pertaining to the issue of the growth and development of scientific knowledge. Popper’s

success, thus, mainly consists in attending to a new set of problems.

The philosophy of science developed by Popper has two arms. One of them is fallibil-

ism, and the other, consequential justification. These are put together in a coherent manner

to give rise to the hypothetico-deductive methodology. According to this methodology the

scientist proposes an hypothesis and deduces testable consequences from it. How a scientist

conceives it is immaterial to a philosopher, for, it is held, that the manner of conceiving

has no epistemological relevance. It is Popper’s version of consequentialism that replaced

inductivist/positivist philosophies of science.

The account given here on the rise of consequentialism is far from being complete.

There are many other reasons that could have been stated. The role of American Pragmatism

advocated by Peirce, for example, could have played a very important role, especially in the

American continent.40 However, the essential problems that have led to consequentialism, to

the best of our awareness, have been covered in the account.

3.4 Kuhn’s Irrationalism

The cumulative (linear accumulation) view of scientific progress has been attacked

by Kuhn in The Structure of Scientific Revolutions where he proposed an alternative pattern

of how scientific knowledge “advances” by alternation of a normal science phase and a revo-

lutionary science phase. According to the cumulative view originally held by positivists (held

even today by most working scientists) and uncritical believers and supporters of science,

the development of scientific knowledge consists in gradual addition of true theories/laws one

after another, accompanied by the rejection of the false theories/laws. That is, scientists

reject a theory because it is false, and accept it if it is true, therefore there is a rational

pattern to the development of scientific knowledge. If a theory is dislodged by another, the

older theory is either false or less close to the truth than the new. Truth or falsity of scientific

39Quine/Duhem’s thesis, for example, is one major objection against falsificationism, though in principle it
applies to all methods of validation. Its main point, which is based on holism, is that an observation cannot
conclusively falsify a theory which is a coherent net of propositions. By making appropriate changes elsewhere
in the system of the theory, it can be made immune to falsification.

40Cf. Nickles 1980, “Introductory Essay” Scientific Discovery, Logic, and Rationality p. 4.
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theories, it was believed, can be determined by the employment of methodological/systematic

procedures. Kuhn’s influential thesis attacks such a view.

Kuhn’s powerful and insightful historical illustrations brought about a revolutionary

change in the views held by contemporary philosophers of science. Briefly Kuhn’s position is

as follows:

There is a phase of scientific development called normal science, during which sci-

entists work according to rules, solve puzzles (problems) on the basis of a more or less fixed

(predefined) set of conceptual apparatus. During this period the behavior of scientists is un-

critical (normal/rational/dogmatic). However, normal science occasionally faces certain crisis

situations, called anomalies, which cannot be solved by the present set of rules and concep-

tual apparatus. When anomalies accumulate, science is said to be in a crisis. During this

time some scientists become critical of the suppositions of the normal science in the light of

an alternative set of assumptions and conceptual framework. Some scientists, specially those

who are young, start looking at the problematic cases ‘under’ the light of new hypotheses.

As many more scientists start looking at the problematic cases in the new manner, a rapid

progress of of the idea takes place by pushing the older one aside. This phase of scientific

development is revolutionary.

It is believed that every theory is born refuted, and hence the new set of ideas

also face the problem of anomalies. On the basis of new set of rules and a new conceptual

apparatus another normal science phase comes into being. Since normal science is usually set

by solving a problem in a novel manner, that problem becomes a role-model or a paradigm

case. Since the group of scientists share a set of common problems, goals, methods, standards

and basic assumptions, called as disciplinary matrix, a paradigm of shared values is formed.

In terms of paradigms scientific development consists in replacing one paradigm with another.

However, the controversial claim of Kuhn is that the conversion from one paradigm

to another is comparable to a gestalt-switch, a religious conversion, a duck-rabbit situation,

involving no reasoning . A paradigm becomes a view by consensus, it is the number of

believers that determine the success of one theory against another. Thus Kuhn’s view posed

a challenge to those philosophers of science who held that scientific development can be

explained by rational or methodological means. What emerged as a result of this is not

favorable to the line epistemology has been following traditionally from ages.

Consequentialists believed, though they are against inductive verification, that epis-

temology has the role of validating scientific knowledge. After Kuhn’s popular standpoint

epistemology appears to have lost even that narrow footing based on consequential testing.
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The scheme presented by Stegmüller clearly shows what precisely happened to philosophy of

science in the course of its development.

(1) Hume says that science develops inductively and nonrationally ;

(2) Carnap’s idea is that it develops inductively and rationally ;

(3) Popper’s answer is the dual counterpart of Hume’s, namely that it follows a
noninductive, rational course;

(4) Kuhn’s view deviates from all of these. A comparison of his conception with
the other three seems to indicate that he thinks the course of science is
noninductive and nonrational .41

What, therefore follows from this development is that all meta-theories of science

are futile. This threatens the very basic tenet of the general philosophy of science. In the

course of the thesis we will have more than one occasion to critically appraise the views of

Kuhn.42

To summarize, we have seen that certain developments within science have prompted

the development of consequentialism, for no methodological account could be provided for the

genesis of theories/hypotheses/ideas that are highly abstract. We have tried to show that Lau-

dan’s observations regarding the character of Galileo’s science is incorrect, for Galileo’s science

is sufficiently theoretical and abstract in order to show the failure of the Baconian/Aristotelian

inductive methods. Though there are sufficient reasons for the development of consequen-

tialism in the 19th century itself, there was a temporary rise of inductivism developed and

defended by the Logical Positivists at the beginning of the century. Later we have shown

how the rise of Positivism has seen another spurt of inductivism, which too has to be aban-

doned, for scientific theories could not be shown to be constructed in the manner suggested

by them. Ultimately Popper’s philosophy of science became an alternative to the problem

ridden Positivism.43 Kuhn’s thesis on the structure of scientific revolutions, and inter-theory

relations has led to the irrationalist views of scientific knowledge. Consequentialism has not

vanished from the scene at all, despite the fact that the emphasis on method in philosophy

of science has become rather out of fashion. It is certainly true to say that consequentialist

41Stegmüller 1976, p.136.
42Kuhn’s The Structure Of Scientific Revolutions caused lot of critical reactions. The above account is more

or less a digest of the immediately relevant issues taken from the following sources, apart from the original:
Dudley Shapere 1964, ‘The Structure of Scientific Revolutions’ Philosophical Review 73, Lakatos, Imre and
Musgrave, Alan, eds, 1970, Criticism and the Growth of Knowledge., Hacking, Ian 1983, Representing and
Intervening .

43Popper’s philosophy of science too did not continue in the manner in which it was formulated. It was
modified by his supporters, mainly at the London School of Economics, led by Imre Lakatos, who defended a
moderate version of falsificationism that was designed to meet the objections/criticisms raised by Feyerabend,
Quine, Kuhn, among others.
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testing/validation of scientific theories still continues to be the official philosophy of science.

On the question of the possibility of a logic of discovery, the consequentialist views remain

the received view.



Part II

The Central Argument
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Chapter 4

Epistemology of Discovery

The essential argument of the thesis begins in this chapter. We will first critically

review the arguments against a discourse of discovery in epistemology, which culminated in

Laudan’s challenge. It is observed that the dichotomy of contexts into those of discovery

and justification, as proposed by Reichenbach, need not be challenged for promoting the

epistemology of discovery. However, it is suggested that the epistemologically significant

context of justification be properly distinguished into the context of generation and the

context of application. With regard to the problem of theory ladenness of observations, it is

proposed that in the context of the genesis of scientific knowledge observations are not theory

laden, while in the context of development, all scientific observations are theory determined.

Our response to Laudan’s challenge consists in working out the possibility of generativism and

fallibilism on one hand, and distinguishing meaning and truth as two distinct epistemological

values on the other hand. We then explore the peculiar nature of ampliative logics as against

explicative logics. We then give a positive characterization of induction as a species of the

ampliative logic of abstraction. We propose that induction is based on the principle of

excluded extremes, just as deduction is based on the principle of excluded middle. The

question of validity of induction should therefore be considered independently from the notion

of deductive validity. It is also observed that the world where induction is possible is the

world where mathematics is possible, setting the context available for the highly ampliative

logic of inversion, which is stated to be based on the principle of included extremes. In the

last section we posed the tension between the content-neutrality of logic on one hand and the

possibility of amplifiability of content by logics of discovery on the other.
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4.1 The Received View

In the light of significant developments in the history of epistemology and scientific

method, many scholars have found it necessary to raise the question of the legitimacy of the

fundamental problems in epistemology. One of the major issues of traditional epistemological

discussions that has met with greater opposition is regarding the method/s of scientific dis-

covery. According to the “received view” in the philosophy of science the genesis or formation

of concepts and theories (knowledge) should be distinguished from the epistemological anal-

ysis of concepts and justification of knowledge. It is claimed that the study of the genesis of

concepts and theories is ultimately irrelevant to the objective study of their epistemological

status. It is further claimed, that such a study would be appropriate for a psychological

study of the processes of thought but not for a philosophical analysis of knowledge. The

process of how we arrive at possible knowledge escapes logical analysis, thus the question has

no relevance in philosophy. Our main task in this chapter, therefore, is to critically assess

the position/s, expressed in the present century, against the epistemological relevance of the

issues pertaining to the genesis of knowledge.

A discussion on this issue can be initiated by considering one of the most impor-

tant distinctions introduced in the present century between the context of discovery and the

context of justification. The distinction has gained widespread currency among both camps,

i.e., those who are in favor of a logic of discovery and also those against it. This distinc-

tion however particularly boosted the received view. One reason for this is that though it

was originally introduced to separate the psychological component from the philosophical

or epistemological the distinction itself was based on another—between the logical and the

illogical. Since this distinction has gained a great deal of popularity, and since the roots of

this distinction have bearing on the content of this chapter, we shall repeat these rather well

known arguments.

According to the popular view of scientific discovery, discoveries and inventions

are to a large extent unexplainable, results of imaginative leaps, and are the product of

the ‘sparks’ of creative genius. Hans Reichenbach, and Karl Popper are among the chief

proponents of this irrationalist account of discovery. According to Reichenbach scientists

while discovering a theory are usually guided by guesses, and they cannot name a method by

means of which they discovered it. Careful study of Reichenbach does not indicate that he is

altogether against the program of discovery, though he clearly distinguished the psychological

context from the epistemological. We shall see below (page 91) that he allows discoverability

arguments in the context of justification. Reichenbach’s often quoted passage is as follows:
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The act of discovery escapes logical analysis; there are no logical rules in terms of
which a ‘discovery machine’ could be constructed that would takeover the creative
function of the genius. But it is not the logician’s task to account for scientific
discoveries; all he can do is to analyze the relation between facts and a theory
presented to him with the claim that it explains these facts, in other words logic
is concerned with the context of justification.1

The view that logic is concerned only with the context of justification is what we call

epistemology-minus-synthesis. The possibility of a logic of discovery is therefore ruled out.

Following him Karl Popper maintains that the initial stage of conceiving or inventing a theory

neither calls for logical analysis nor is susceptible to it.

The question how it happens that a new idea occurs to a man—whether it is a
musical theme, a dramatic conflict, or a scientific theory—may be of great interest
to empirical psychology; but it is irrelevant to the logical analysis of scientific
knowledge.2

He further goes on to say that “every discovery contains an irrational element or a creative

intuition”. He quotes Einstein, who says that there is no logical path leading to scientific

laws and they can only be reached by intuition, based upon something like an intellectual

love of the objects of experience. More than this Popper even makes room for faith in the

context of discovery, when he says that

[S]scientific discovery is impossible without faith in ideas which are of a purely
speculative kind, and sometimes even quite hazy; a faith which is completely
unwarranted from the point of view of science.3

These remarks suggest that scientific discovery is necessarily irrational, and it is a matter for

psychological inquiry. The only scope left for philosophy of science is to carry out testing of

theories devised by the greatest of great minds.

Is this distinction merely serving the purpose of clarifying the scope of philosophical

analysis with respect to knowledge? But if it is only the testing of theories that falls in

the scope of epistemological analysis, then there is a danger of losing the ground for any

epistemology of science. This possibility exists because methods of testing are not on any

surer ground. If there exists no surer ground for consequential testing—sufficient difficulties

with consequential testing of theories have already been pointed out—then no possibility of

epistemology remains, for the context of discovery has already been regarded as abandoned

1Reichenbach 1938, Experience and Prediction, p. 231, our italics.
2Popper 1959, The Logic of Scientific Discovery p. 31.
3Ibid p. 38.
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from epistemology. In fact this has taken place in the recent past. We are familiar with the

views challenging the very idea of methodology and epistemology.

If it is already well known that the consequentialist view has failed in the appraisal

of scientific theories, one might ask, why then call it the received view? It is still the re-

ceived view insofar as the problem of discovery is concerned. Most scholars criticized the

hypothetico-deductive method for reasons of its failure in the context of justification and

certainly not for their views regarding the problem of discovery. Its failure in the former

context did not affect the popular stand taken by scholars at large against the methodology

of discovery, because most scholars seem to be convinced that no epistemological significance

can be given to the context of discovery. (See § 4.5 page 101 for the statement of Larry

Laudan in this connection.)

It is possible that the failure of finding a methodology for testing theories could

have been because we did not take the context of discovery seriously. Certain factors in

the latter context must have had some relevance in the former context. Kuhn did suggest

that psychological and social factors do enter into theory appraisal. But he agrees with, for

example, Popper that there are no rules for inducing correct theories from facts.4 Since he

emphasizes “socio-psychological” dimensions in his analysis, and has criticized Popper for the

latter’s obsession with normative concerns, we can infer that he is also one of those who has

not seen the possibility of a logic of discovery. However, though he would deny logical status

to the context of discovery, he would undoubtedly be interested to deliberate, unlike Popper,

about the context of discovery without hesitation. Thus it is claimed that non-logical factors

do play a role in theory appraisal by the opponents of consequentialists, but the position of

the consequentialists on the question of the discovery problem remained without challenge.

We will see below that some of the defenders of the discovery program have denied

any water tight distinction between the two contexts. We will introduce another distinction—

between the context of generation and the context of application—in place of the traditional

distinction, and will argue that both the contexts have justificatory (proper epistemic) role.

In the previous chapter we have already noted the observations of Laudan regarding

the rise of consequentialism and the reasons thereof. Laudan also provides a more challenging

argument against the possibility of a philosophical analysis of discovery in his paper ‘Why was

the Logic of Discovery Abandoned?’. As mentioned in the introduction, since this thesis can

be viewed as a response to his challenge, we shall present a full statement of his challenge. The

challenge is based on the claim that “the case has yet to be made that the rules governing

4Kuhn, 1977, Essential Tension, p. 279.



4.1. The Received View 89

the techniques whereby theories are invented (if any such rules there be) are the sorts of

things that philosophers should claim any interest in or competence at.” The challenge

itself would be to show that the logic of discovery (if at all formulatable) performs the

epistemological role of the justification of scientific theories. Therefore, those who profess

generativist methodology must show that methods of generation per se do carry special

epistemic weight.

According to Laudan there are two groups of philosophers, namely the generativists

and consequentialists. The generativists believed that theories can be established only by

showing that they follow logically from statements which are the direct results of observation.

Bacon, Descartes and Newton are the main advocates of this thesis, for whom hypotheses and

hypothesis testing functioned as heuristic devices for establishing evidential basis for genuine

theories. The consequentialists on the other hand believed that if consequences are proved to

be true then this provides an epistemic justification for asserting the truth of the theory.5 The

latter thesis developed after the 19th century in the light of the absence of any direct route

(which mostly meant inductive routes) from phenomenal claims to deep-structural theories.

These problems of pure inductivism were raised in the writing of Herschel, Whewell, Mill,

DeMorgan, Boole, and Jevons during the 19th century.

It is clear that both the groups are primarily concerned with the epistemic problem

of theory justification. For generativists the purpose is dual. One is to accelerate the pace of

scientific advance, and the other is to provide a sound warrant for our claims about the world.

If a foolproof logic of discovery could be devised, they thought, it would both be an instrument

for generating new theories and, since the scientific theories are believed to be infallible

it would automatically guarantee that any theories produced by it were epistemically well

grounded.6 This has been the manner in which the link between infallibilism and generativism

developed. Laudan explains that most traditional philosophers subscribed to the view that

legitimate science consists of statements which are both true and known to be true.7 So long

as infallibilism was in fashion, generativism had grounds for survival.

However, as already mentioned, in the early nineteenth century infallibilism crum-

bled, giving rise to fallibilism. It was during this time, according to Laudan, that an un-

mistakable shift took place. It took place by two mutually reinforcing developments that

converged to separate discovery from justification. One of course was the increasing attrac-

tiveness of a fallibilistic conception of theories. It was based on the realization that scientific

5Laudan 1980, in Nickles 1980, p. 184.
6Ibid, p. 183.
7Ibid.
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claims cannot be proven true whether or not they were generated by induction from the

facts. Second was the acceptance of the view that evaluation of theories can be done in terms

of their consistency and their testable consequences. Consequential testing did not find its

way initially because of the fallacy of affirming the consequent. It could be freed from this

fallacy only when the fallibilist view of theories was widely accepted. These are, according

to Laudan, the factors leading to the abandonment of the logic of discovery.

Apart from the developments in philosophy of science there are certain developments

in science that have played a decisive role in the replacement of inductivism and infallibilism

by the consequentialist methodology. Nickles points out that the developments in modern

science do not appear like the stuff for inductivists. The cases such as the phenomenological

thermodynamics which gave way to kinetic theory and statistical mechanics, the Newtonian

world picture gave way to the Einsteinian, and also the development of Quantum theory

etc., can not be accounted for by inductive reasoning.8 The failure of inductivism becomes

clearer if we consider that any science worthy of consideration involves theoretical entities

and processes which are far removed from the observational realm. Thus Laudan is correct

in making the following observation:

[I]f what we expect to discover are general statements concerning observable reg-
ularities, then mechanical rules for generating a universal from one of more of its
singular instances are not out of the question. By contrast, if we expect to dis-
cover ‘deep-structure’, explanatory theories (some of whose central concepts have
no observational analogues), then the existence of plausible rules of discovery
seems much more doubtful.9

With these arguments, that appear certainly plausible, Laudan claims that the logic of dis-

covery has no philosophical relevance. Therefore the challenge for any generativist today is

‘Why should the logic of discovery be revived?’. In order to meet the challenge, as stated

above, it is necessary to show that generativism has epistemological relevance. We will try to

meet the challenge by not only arguing for the epistemological relevance of, but also propos-

ing a method of discovery/invention of scientific knowledge. Before we begin to develop the

thesis, we find it necessary to show that most of the objections, raised against the discovery

program, including Laudan’s that are mentioned above, are illegitimate.

Let us take stock of the various reasons given against the logic of discovery before

we start discussing their credibility or lack or it.

(1) The context of discovery is restricted to the study of the actual, causal procedures

underlying actual human behavior; hence it is a subject matter of psychology.
8Nickles 1980, op.cit. p. 4.
9Laudan, op.cit. p. 178.
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(2) The discovery of ideas is a creative act, requiring intuition, imagination and individual

talent.

(3) There is no discovery machine or set method or logic for arriving at new ideas.

(4) Inductivism has been proved wrong. And there are no pure observations free from

theories, and so observations cannot be the starting point of obtaining knowledge.

(5) Generativism gave way to consequentialism because history supported the ‘falsity’ of

infallibilism. So long as infallibilism was in fashion, generativism has grounds to survive.

After the advent of fallibilism the logic of discovery has lost total epistemological ground.

We will take up each of these points and argue that all of them are mistaken.

4.2 Psychology or Logic?

We have seen that Reichenbach and Popper argued for a clear demarcation between

psychology of knowledge and theory of knowledge. They likened epistemology to a normative,

logical study of knowledge. While for Reichenbach logic included both the inductive and the

deductive varieties, for Popper it included only deduction.

Martin Curd contends that Reichenbach’s original distinction, as stated above, was

quite different in nature and in application from the one usually attributed to him.10 It is

true that Reichenbach demarcates epistemology from psychology. According to Reichenbach

epistemology aims “to construct justifiable sets of operations which can be intercalated be-

tween the starting point and the issue of thought processes, replacing the real intermediate

links. Epistemology considers a logical substitute rather than real processes.”11 T. Nickles

points out that:

Reichenbach did not deny that reasoning may occur in thinking one’s way to
a discovery or problem solution; the rational reconstruction of that reasoning
to a theory would be an appropriate philosophical task, falling into the context
of justification. ... It may happen occasionally that the original reasoning to
discovery is complete and consistent, in which case the logical reconstruction will
be identical with the reasoning in the context of discovery.12

10Curd 1980, ‘The Logic of Discovery: An Analysis of Three Approaches’ in Nickles 1980, op.cit. pp. 201–
219.

11Reichenbach 1938, op.cit. p. 5.
12Nickles op.cit. p. 12.
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Reichenbach makes no distinction between the process of discovering or generating new theo-

ries, laws, explanations and the process of justifying them. His distinction is merely between

scientific activity itself and that activity as logically reconstructed.13

From this it becomes clear that Reichenbach’s distinction of the two contexts did

not deny the possibility of the logic of discovery under the context of justification.

Our response to the question whether a theory of discovery should be psychological

is that it should not be. Not because psychology cannot contribute anything insightful in

relation to scientific discovery, but because there are certain essential epistemological issues

in the context of discovery.

Another view that goes hand in hand with the view that a theory of discovery

belongs to psychology is the view that creativity is the function of a genius, and not just any

human being. This part of the claim presupposes that discovering/inventing ability is not a

character of all human beings. It is a subjective ability, for it depends on the psychological

profile of a scientist. Thus epistemologists have nothing to contribute in this regard. What

conditions make an individual a genius is not the concern of a theory of knowledge, for an

epistemologist is concerned with validation of knowledge, assuming that all abilities are given

by whatever source. This amounts to nothing more than drawing a line between concerns of

natural science and the concerns of a philosopher. Consequentialists need not be attacked on

this point. We, therefore, shall not argue against such a demarcation between the factual and

philosophical matters. We see no threat to generativism if this part of the consequentialist

thesis is conceded. Further, we will claim that a generativist thesis would emerge stronger if

and only if this part of the thesis is conceded.

What needs to be attacked, however, is the thesis that the context of discovery

belongs to psychology or biology, or any other natural science. We think that it is possible

to articulate how we arrive at ideas without recourse to behavioral/biological mechanisms.

Psychological or biological mechanisms are not after all the same as logical or methodological

“mechanisms” (inference patterns).

Why is it that the context of discovery does not include the study of actual, causal

processes underlying human behavior? None of the philosophers who argued for a logic of

discovery (such as Bacon or Descartes) have meant it to be an empirical study of human

behavior. Surely consequentialists know this. They are aware that they have not been able

to propose a method of discovery. The method of induction to be sure cannot explain the

genesis of the deep-theories modern science has produced. We agree with them on this point.

13Ibid, p. 12.
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Consequentialists indeed have been quite successful in bringing home this point. Descartes’

systematic method of doubt or his method of analysis and synthesis have also not been able

to either generate or explain by rational reconstruction any of the major discoveries. Failure

on the part of some philosophers then should not lead us to believe that there cannot be

a logic of discovery. If we infer from the failure of traditional generativists that they failed

because there exists no such method, our inference cannot be rated legitimate. For, even a

logic of deduction has a history. Nobody would dispute the point that even atemporal formal

systems need to be (and were) constructed and devised by thinkers who are actual human

beings. We have seen in the preceding chapter the genesis of epistemology, and the changing

methodological scene. In the course of that development many fresh ideas (mostly in the

form of thematic-pairs) have been invented. On this count epistemology is no different from

any exploratory disciplines. Except for the peculiar subject matter of epistemology we do

not see any distinctive features that separate it from any other exploratory field of inquiry.

Therefore, from the fact that epistemology has so far not offered any theory of discovery, it

does not follow that epistemology has nothing to do with discovery. No biologist has given a

completely satisfactory account of life. But we don’t say therefore that biology is not about

life. Certain questions are difficult, and the logic of discovery is one among them. Unlike

scientists most philosophers suffer from the disease of being conservative. No exploration

is possible if one believes that absence of evidence is the evidence of absence. We are not

willing to agree that philosophy is merely explicative and not exploratory . Our narrative of

the development of epistemology and scientific method in Part-I has made an attempt to

bring home this impression that philosophy also has something called development.14

In recent times after the development of Artificial Intelligence and other compu-

tation based techniques—which we should note are dependent on whatever little we know

of methodological/formal aspects of thinking—large varieties of problem solving algorithms

have been implemented. Though this may not be sufficient to understand the intricacies of

the complex and highly involved process of scientific imagination, we cannot underestimate

14A few remarks are not out of place regarding the nature of philosophical knowledge. It is necessary to
keep in mind that people started thinking deductively even before deductive logic was established. The ability
to think deductively is not the epistemologist’s or logician’s gift to human beings. His contribution is that
he abstracted a pattern of thought so that an aspect of thinking can be described and understood. It is not
appropriate therefore to say that if logicians have not found a logic we would have been deprived of validating
mechanisms for our knowledge. Who would ever say that we need to know the physiology of digestion in order
to digest food! However, the advantages of knowing our abilities as well as limitations legitimizes the activity
of philosophy. Therefore absence of any successful logic/s of discovery should not lead to the inference that
there are no logics. If there is any aspect of human being that is least understood by any standard it is the
aspect of human thinking. We should realize that if the theories of thinking remain incipient so would the
theory of knowledge. By theories of thinking we do not mean the psychology of thinking but logical patterns
of thinking.
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computational capabilities. The point we wish to make by considering this case is that the

theory/s upon which these developments are based are not psychological, but are abstract

logico-mathematical theories.

None of these developments, whether it be the abstract logico-mathematical theories

behind the complex computations, or the concrete realizations of such theories, by any stretch

of imagination be called ‘causal processes underlying human behavior’, and so be dubbed as

belonging to human psychology. Responding to the allegation that the logic of discovery is

restricted to psychology Kelly says:

First, it [the logic of discovery] is not confined to the study of actual , causal
processes. Given a programming system, the hypothesis generation procedures
specifiable in that system exist abstractly in the same sense that proofs in a given
formal system exist. So, the logic of discovery is an abstract study whose domain
includes all possible procedures.

Second, the logic of discovery is concerned with the investigation of hypothe-
sis generation procedures. What adequacy comes to is a normative question.
Desiderata include general applicability, rapid convergence, efficiency, and an abil-
ity to generate simple, explanatory, confirmed hypotheses in the short run. So
the logic of discovery is a normative, abstract study.15

Kelly’s attack on the anti-generativist position exploits the computational symmetry between

test procedures and generation procedures. He says that if one pays attention to the mathe-

matical, computational basis of the logic of discovery one would not take an anti-generativist

attitude. These considerations clearly suggest that a logic of discovery is not visualized by

most defenders as a theory of psychology but as a logico-mathematical theory. Therefore, it

is not valid to say that context of discovery belongs to psychology, knowing fully well that

most of the defenders are not looking for a psychological theory of discovery.

We agree that these arguments cannot lead us to anything close to a logic of dis-

covery. Our concern was basically to show that consequentialists like Popper, (and possibly

Reichenbach) are wrong to think that the context of discovery should belong to psychology,

or natural science.

4.3 Divorce Thesis

Response to the divorce between the two contexts of discovery and justification has

been different even within the group that defends a logic of discovery. Hanson argued that

creation and inventiveness are not mysterious or irrational and it would be inappropriate

15Kevin Kelly 1987, ‘Logic of Discovery’, Philosophy of Science, Vol-54, pp. 436-37.
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if we concentrate solely upon confirmation and falsification of conjectures. He argued that

both the contexts have a logic. He has shown that the standards by which a theory is

confirmed or refuted are not simply applied after the theory is presented in its completed

form. These ideas enter into the form of thinking during the genesis of the theory. He

demonstrates his point by applying Peirce’s theory of abductive inference in the case of

Kepler’s discovery of planetary motion.16 Hanson therefore is not against the distinction.

H. Simon also believes in the distinction and holds that there is a special logic of discovery

distinct from the logic of justification.17 These views should be clearly distinguished from

those of Bacon and Newton for whom the methods of discovery carry a special epistemic

weight. And more importantly the methods of consequential testing, according to them, are

inferior to generative justification.

Some of those who favored the discovery program such as Paul Thagard, Marcello

Pera, M.D. Grmek, Robert McLaughlin etc., have attacked the divorce thesis. P. Achinstein

has argued that any argument used in the initial generation of ideas could in principle be

found in the context of justification and vice versa.18 Thomas Nickles argues that such attacks

on the dichotomy are not only unnecessary, some moderate distinction would be supportive

of the discovery program.19 Thus we see that even among those who are in favor of a logic of

discovery there is disagreement regarding the distinction. The position that we shall defend

is as follows.

In place of the distinction between the context of discovery and the context of

justification, we suggest an alternative. As already stated the motivation for the original

distinction proposed by Reichenbach was to separate the epistemological context from the

psychological/biological context. Let us first rephrase the original distinction, to avoid con-

fusion. The new names we suggest are the context of natural theories of knowledge, and the

context of philosophical theories of knowledge. The former would include more or less all

the aspects that are studied under the name of cognitive science, which is fast emerging as

a new inter-disciplinary science. This includes cognitive psychology, cognitive biology, some

mechanical aspects Artificial Intelligence, etc. The latter would include the context philoso-

phers should be interested in, which may be called the epistemological context. So far we

have not introduced anything new, except to suggest, what we consider to be better and the

least confusing terminology.

We suggest now that that the epistemological context be further divided into two

16Cf. Hanson 1958, Patterns of Discovery .
17H. Simon 1977, Models of Discovery and Other Topics in the Methods of Science.
18Cf. Nickles 1985, ‘Beyond Divorce: Current Status of the Discovery Debate’ Philosophy of Science p. 180.
19Ibid p. 185.
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more contexts, namely, the context of generation and the context of application. Since both

are epistemological, justificatory reasons are to be found necessary in both contexts. Then

where lies the difference? As the terms indicate, the former context refers to the mode of

philosophical inquiry that addresses the question “How do we arrive at knowledge?”. This

context includes the philosophical deliberations on the problems of discovery and invention.

Since this essay addresses this very question, but restricted to scientific knowledge, further

elaboration would follow. The latter context is regarding the truth claims of scientific knowl-

edge. It may not be immediately clear to the reader why we have used the expression

‘application’ to describe this context. What we have in mind relates well with the context

where truth and falsity of scientific assertions is determined. We will consider a scientific

assertion as involving the application of what is produced in the former context, the context

of generation. We propose that epistemological discussions can be viewed mainly as related

to either of the contexts. We propose that in the context of generation we study the problems

pertaining to the production of applicable pieces of knowledge like concepts, models etc., and

in the context of application we study the philosophical problems relating to the true or false

application of concepts, models etc. More details and philosophical motivations/reasons for

introducing the distinction will be found in the next two chapters. It is sufficient here to note

that this distinction is not drawn on the same lines as that of Reichenbach’s, or the usual

defenders of discovery program.

We do agree with Hanson that the distinction should be maintained, but we do

not agree that there are distinct kinds of logics for discovery/invention on one hand and

justification on the other. The logic of discovery cannot be a ‘machine’ driven process that

only yields ‘products’, without having any say anything about the value of the products. It

is also a conscious process, in the sense that it involves volition. (Recall the discussion of

Part-I, where it is noted that it is essential for a method to be a voluntary process.) It is

a process that is constantly under the gaze of conscious reason, such that certain epistemic

values get implanted—imposing constraints—in order to ensure that no gibberish would be

generated. Therefore, we cannot have a method that has epistemic value and at the same

time does not have a ‘capacity’ to filter its products. We shall argue that nothing be counted

a logic of discovery if it has no in built validating reasons. Therefore, no epistemologically

relevant method can be free of justificatory/validatory role. Hence, we disagree with Hanson

and others who thought that discovery logics are free of validating reasons.

However, Achinstein’s claim is not easy to understand in relation to our position.

Because we see on the one hand that the distinction should be collapsed on the grounds of
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justification, but on the other hand we see a need to make a distinction. Since, we agree with

him that validating reasons do enter into the context of discovery, we find affinities with him.

But, he goes to the extent of suggesting that the same justificatory reasons occur in both

contexts, and therefore the distinction be collapsed.20 On this point we disagree, because the

nature of epistemic values that enter into the context of generation differ markedly from the

kind that enter in the context of application. Since this notion of different epistemic values

forms part of the major claim of the thesis, we will attend to it in detail below.

To summarize the points made in this section: The distinction proposed by Reichen-

bach need not be challenged, though a terminological change would make it less confusing.

We have proposed that the epistemological context be further divided into the context of

generation and the context of application.

4.4 Theory Ladenness of Observations

Apart from the arguments based on the distinction of the two contexts, there also

is another angle of attack on the generativists based on the thesis of theory-ladenness of

observations. This is targeted against the generativists’, especially inductivists’, belief that

true scientific theories can be inferred mechanically from an exhaustive collection of facts

gathered without any theoretical preconceptions. It is also against the positivist’s view that

a scientific theory contains observable and theoretical elements, and that it is on the basis

of the former that the latter gain epistemic support. We have presented the argument of

Popper in the previous chapter.

Responding to the objection that all observations are theory-laden Marcello Pera

says that the hypothetico-deductivists commit the fallacy of assimilating assumptions into

hypotheses. He calls this the transcendental fallacy.21

To see the fallacy, Pera says, it is necessary first to clearly see the difference be-

tween assumptions and hypotheses. The belief that there are regularities in facts, the belief

in causality, simplicity etc. are assumptions with which scientists begin their enterprise. As-

sumptions are part of the foundation of the enterprise, whereas an hypothesis is provisionally

formulated, and is about relating one phenomenon with another. Hypotheses have empirical

content, while assumptions are devoid of it. Assumptions are properly called zero principles,

for they do not refer specifically to any fact.

Pera defines the ‘transcendental fallacy’ as the misguided step of confusing the plane

20Cf. Achinstein 1971, Law and Explanation
21Marcello Pera 1981, ‘Inductive Method and Scientific Discovery’ in Grmek 1981. p. 147.
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of a priori conditions with that of the empirical contents made possible by the former.22 Thus

assumptions cannot be assimilated into hypotheses. The upshot of this discussion is that only

assumptions and not hypotheses logically precede observations. Pera’s argument leaves open

the question whether hypotheses logically precede observations.

We think that theory-ladenness of observations should not be considered a valid

objection against a logic of discovery, let alone inductivism, because of at least two reasons:

one pertaining to the context of genesis, and another pertaining to the context of development.

Even if all scientific observations are made later to the possession of a theory, we cannot

conclude that there cannot be non-scientific observations that are scientifically relevant in

the context of the genesis of scientific theories. (The distinction between scientific and non-

scientific observations will become clear after the distinction between structure dependent and

structure independent observations is introduced (See §6.2 page 163) If there exists a relation

or an inference pattern connecting the prior non-scientific observations and the scientific

observations, explaining the process of theorization, then the point that all observations of

scientists are theoretical cannot be taken as a valid objection against a logic of discovery.

This is because the nature of observations then would be different. We also consider that

all science, and all scientific observations are necessarily theoretical. The distinction between

theoretical and non-theoretical, scientific and non-scientific must be maintained in the context

of the genesis of science from non-scientific precursors. Since we believe (and also propose)

that there is a non-inductive pattern of inference that can explain theorization, the above

mentioned objections have no implications for our thesis.

The second reason in the context of development of science is that ‘theories’ can

beget ‘theories’. Though we will not say that omnia theorea ex-theorea (all ‘theories’ come

from pre-existing ‘theories’), we will demonstrate below that new theoretical structures can

come from pre-existing theoretical structures. If there exists a significant distinction between

theoretical and non-theoretical structures, then there must exist a manner by which we

can construct theoretical from non-theoretical precursors. Traditionally the believers of the

analytico-synthetic epistemological theme always attempted to understand how we move from

the known to the unknown. In Part-I, we have observed this in detail. No one who believed

in the theme held that knowledge or theoretical knowledge can be built either from a tabula

rasa or entirely from rational sources. We begin from where we stand, and based on that

footing we further go on climbing. Popper is correct in criticizing Lockean empiricism, but

his criticism does not stand against the analytico-synthetic theme, which we will also defend

22Ibid.
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with certain renovations. Therefore we think that the argument based on theory ladenness

may be pitted against inductive accounts of theorization, but not against those generativists

who consider that all scientific knowledge is theoretical and theories can give rise to theories.

Thus, we see two movements: [1] Moving from non-theoretical elements to theoret-

ical elements is possible in the context of genesis. [2] Moving from pre-existing theoretical

elements to new theoretical constructions is possible in the context of development. These

two steps are illustrated in detail in the case studies in Part-III. However, it should be pointed

out to the reader that as the thesis has developed, the need to avoid the expressions ‘theoret-

ical’ and ‘non-theoretical’ has been increasingly felt. Though we are not entirely successful

in the present work, we see the distinct possibility of avoiding the ambiguous terminology in

favor of a neutral one—structure dependent and structure independent (§6.2 page 163).

Another clarification needs to be made. It is one thing to say that all scientific ob-

servations are theory-laden, and quite another thing to say that all observations are theory-

laden. While we see the point of the former assertion, the latter is far from being true.

The latter can be made true by holding the position that all concepts are theoretical, which

however cannot be held along with the belief that scientific knowledge is epistemically dif-

ferent from non-scientific knowledge. The distinction between scientific and non-scientific

knowledge cannot be held without a distinction between two kinds of concepts, the scientific

and non-scientific concepts. For example, when Popper proposes the demarcation criteria

between science and non-science, ultimately it is the nature of the concepts that determine

their scientificity, which for Popper is falsifiability. This is because a concept that has no

empirical content, when employed in a statement makes the statement unfalsifiable. There-

fore we see that even in Popper’s model there is an underlying classification of concepts that

yield statements that are falsifiable and non-falsifiable (scientific or non-scientific). Accord-

ingly Popper must either concede a distinction between two kinds of concepts, or develop a

distinction between concepts and theories.

Popper’s demarcation criteria cannot sufficiently capture this requirement. For fal-

sifiability is too weak a notion to capture the character of scientific knowledge. The reason to

be stated is different from Quine’s objections, but related to it. It is possible to have isolated

statements that pass the criterion of falsifiability and not embedded in any system of state-

ments, but such falsifiable statements cannot be called scientific. Falsifiability can become

a delimiting factor, if it is worthy at all, only after the candidates of scientificity, whatever

they may be, pass the test of systematicity . A statement, for example, can be regarded as

systematized, if and only if it is found embedded in a system of logically compatible state-
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ments. A non-trivial notion of falsifiability, therefore, requires or should presuppose first a

division between systematic and non-systematic knowledge.

Consequently we can say that all scientific observations depend on systematic con-

ceptual connections, and, in this sense only, all scientific observations are ‘theory’ laden. This

position rules out free observations only in the realm of science, while it holds that free (i.e.,

non-theory laden or non-system laden) observations are possible in the non-scientific realm.

In the context of the genesis of science, the problem of how free observations enter into a

system that is already existing, or/and form into an independent system becomes relevant.

Systematization is known to be an essential component of scientific knowledge and cannot

be neglected. We will attend to the problem of genesis in the first two Case Studies.

We present here another example to show that observations can indeed be distin-

guished on the basis of a distinction between pre-scientific and scientific. Tycho Brahe’s

observation in 1572 of the exploding star in Cassiopeia was an important discovery in the

history of astronomy.23 The prevailing theory at the time of observation was the Aristotelian

doctrine that celestial matter is unchangeable. If it is true that theories necessarily guide

observations, then how could Tycho observe an exploding star, contrary to the Aristotelian

doctrine. ‘Explosion’ is a concept familiar to even a ‘savage’ mind. Once a meaningful con-

cept is formed in one’s mind, one can predicate it of any thing whatsoever. Thus it is not

necessary to have theories, let alone scientific theories to describe facts, what we need to

know is whether a state-of-affairs needs the application of a scientific concept or not. After

all scientists also use non-scientific concepts in contexts where they properly apply.

Thomas Kuhn’s examples also suggest that the term ‘theory’ is used in a place where

he should have used the term ‘concept’. Kuhn uses ‘concept’ and ‘theory’ interchangeably.

This can be demonstrated with reference to his own contention that what is necessary to

discover new phenomena is an alternative conceptual scheme. A conceptual scheme need not

be theoretical. In the case study on chemical revolution in Part-III, we have supported our

claim in detail.

Many examples in biology also support our distinction between pre-scientific and

scientific concepts. For example only after the discovery of the notion of phylogeny (which is

a scientific concept), were the earlier alpha systematics replaced by phylogenetic systematics.

We consider alpha systematics as pre-scientific.24

Therefore it is one thing to say that all observations are concept laden, which we

also hold, but another thing to say that all observations are theory laden. We therefore think

23Cf. R. Blackwell 1969, Discovery in the Physical Sciences p. 37
24M. Bunge 1967, Scientific Research I: The Search for System, p. 83.
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that the thesis of theory laden observations cannot be an argument against generativism.

4.5 Epistemology of Discovery

In this section we shall respond to Larry Laudan’s challenge. We think that meeting

Laudan’s challenge is essential for a generativist, for it really sets the direction towards which

any philosophy of discovery must turn.

In Laudan’s paper, mentioned above, there are two most important points that need

our attention. One of them is best stated in his own words:

The historical vicissitudes of the generators’ program for establishing a logic of
discovery are utterly unintelligible, I submit, unless one realizes that the raison
d’etre for seeking a logic of discovery was to provide a legitimate logic of justifi-
cation.

We agree with him that traditionally logic of discovery was expected to provide a logic of

justification. Therefore, any defense of a logic of discovery must contain an argument to show

how it can also provide justificatory reasons. If it is not necessary for a logic of discovery to

play a justificatory role, then even if there is a logic of discovery, it is of the least consequence

(if not of no consequence) to philosophers or epistemologists.

The second major point Laudan makes is that generativism has ground only if

scientific knowledge is infallible. Since it is increasingly realized that scientific knowledge is

not infallible generativists have no ground to revive a logic of discovery. It is abandoned for

good. We think, that here lies the soft belly of Laudan’s argument.

To see that Laudan is weak on this point, we need to show that the proposed

connection between generativism and infallibilism is not necessary . It is further necessary to

show that no logical or philosophical constraint prevents one from being a fallibilist and also

a generativist.

What is the nature of the connection between infallibilism and generativism? Is it

logical or historical? If the history of philosophy shows that all generativists are infallibilists,

does it follow that they should remain so? What prevents them from being generativists and

fallibilists? Is this an irreconcilable option? Unless one can show that the combination of

fallibilism and generativism is not a logical possibility, Laudan and other consequentialists

cannot assume that logic of discovery has been abandoned for good.

Further, what is the nature of consequentialism and generativism? Is it possible

for some one to believe in both at the same time? Is this too an irreconcilable option? We

think that generativism and fallibilism, as well as generativism and consequentialism are
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reconcilable, provided that we can formulate a framework in which they can be shown to be

compatible. There exists only one way of showing that the stated option is impossible, which

is by defining the terms in such a manner that together they become impossible. But this is

not a significant option.

We agree with Laudan that infallibilism has been, and can be, more or less aban-

doned, but not generativism, for they are separable. We shall not throw out the baby with

the bath water. From a thesis of the fallibility of scientific knowledge, it does not follow that

the logic of discovery can be abandoned.

Laudan might respond saying that generativism is linked to justification, otherwise

it would be “utterly unintelligible”. The position of generativists was intelligible because the

logic of discovery was conceived at the same time to be a logic of justification. Traditionally

generativists held that (1) their ground consists of statements known to be true, (2) it is from

what is known that we ascend to new knowledge, and (3) new knowledge is justified knowledge

only because it is constructed from true knowledge. They believed that truth ‘ascends’ or

‘circulates’, to use the expression of Lakatos, from the basic statements to the newly arrived

statements. This knowledge, it was believed, stands in need of no further justification. That

is, simply, generativists believed in infallibilism. But after the advent of fallibilism this scheme

of things fell apart, because there seemed to be no inferential link, which at the same time

conserves truth between the ground knowledge and theoretical knowledge.

As we see fallibilism and generativism did not appear intelligible because they (tra-

ditional generativists) believed that truth is manifest; because they thought that truth cir-

culates up-stream. Since today we do not believe in the dogma that truth is manifest, we

could adapt fallibilism. But why abandon generativism?. Is generativism a notion that is

defined historically? If so there is nothing that prevents one from changing its meaning. So

we can renovate or revive generativism in such a manner that fallibilism and generativism

would become intelligible. We see that this is indeed possible, and can wake up generativists

to a new dawn!

The renovated generativist framework can be based on a distinction between the

epistemic values attributable to concepts, conceptual structures, definitions, mathematical

structures and models, such as meaning, closure, equilibrium, invariance, and symmetry in

the context of generation, on the one hand, and those of truth and falsity attributable to

scientific assertions in the context of application on the other. Thus, our proposal is based on

a distinction between two qualitatively different kinds of epistemic values those that validate

non-assertive structures which are vital in the context of generation, and those that validate
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assertive structures which are vital in the context of application. The relevant values in the

context of generation can be generalized as semantic value while the latter can be generalized

as veracity or truth.

The history of ideas also provides evidence to the fact that false theories are not

gibberish. Aristotle’s ideas on physics, for example, may not be believed today because

they are false, but on this token we cannot suppose that they are gibberish. Since we can

understand those false sciences, but not believe in them, it is clear that it is one thing to

make sense and another thing to believe that that which is sensible is also true. It may be

true that most of the time people, in some uncritical mood, may not take the trouble to

distinguish carefully the sensible ones from the believable ones. But logically the two modes

of thinking, making sense and believing are different, because the former does not force us

to the latter. Because belief involves assertion, we can say that all that is meaningful need

not be asserted.

The distinction that we are suggesting here is similar to the well known distinction

made between knowledge and understanding. While many philosophers are comfortable with

the term “knowledge”, Stephen Toulmin, for example, is not happy with it. He prefers the

use of the term “understanding” in place of “knowledge”. As he writes:

The basic process of scientific change has been described as ‘criticism and growth
of knowledge’. Rather, it should be characterized as ‘criticism and improvement
of understanding’. . . . The alternative phrase ‘improvement of understanding’
. . . has the merit of redirecting our attention, away from the accumulation of
‘true’ propositions and propositional systems, and towards the development of
progressively more ‘powerful’ concepts and explanatory procedures.25

Though we will not go to the extreme of claiming that understanding alone is important, we

will say that understanding is a necessary condition of true knowledge. How can a method

of understanding, if there is one, be epistemologically irrelevant? We therefore think that

it is one thing to say that there is a logic of discovery of new meaningful ideas, but quite

another thing to say that there is a logic of discovery of true statements. It is easy to see

that here our presupposition is that only statements/assertions can be either true or false,

and not ideas or concepts. The latter are either meaningful or not.

The question naturally arises: Is epistemology the study of the meaningful? In the

case of scientific knowledge the meaning of a term is always structure-dependent. The kind

of structures that we come across in science, such as symmetric and equilibrium models,

have undoubted epistemic value. It may be an open question as to why and how these

25Stephen Toulmin 1972, “Rationality and Scientific Discovery” PSA, pp. 390-99
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structures have epistemic value. Why is it the case that all great theories of science are

models of equilibrium and/or symmetry? On the face of it, symmetry and equilibrium are not

equivalent to truth. But it is a historical fact that they have an intimate relationship. We are

not suggesting that all symmetrical and equilibrium models would come out true, but we are

raising the question: why are all true scientific theories symmetrical or balanced models? And

most scientific terms that gain significance gain it from precisely those structures that have

these properties. Therefore, we should not consider veracity alone as epistemically relevant.

After all there are certain conditions that make us realize veracity . However instrumental

these conditions may be, they remain important insofar as the appraisal of true scientific

knowledge is concerned.

We think very strongly that it is possible to articulate a method of constructing

models that would have the properties of invariance, symmetry, equilibrium etc., and that

such a method would be based on an independent logical relation called inversion.

Based on these arguments we conclude that though Laudan is right in his historical

thesis that all traditional generativists were infallibilists, and the advent of fallibilism led

to the development of consequentialism, pure consequentialism is not the only alternative

of fallibilism. Generativism, fallibilism, and consequentialism can be reconciled within a

coherent analytico-synthetic framework.

In the following sections of the chapter, we shall elaborate and clarify the character

of ampliative logics.

4.6 Ampliative and non-ampliative inferences

Peirce classifies inferences into ampliative (synthetic) and non-ampliative (analytic).

Induction and abduction are included under ampliative inferences, and deduction is included

under non-ampliative.26 We will also follow this classification of inference, but will include a

few other species of inferences, such as inversion and abstraction, under ampliative inferences.

The use of the term ‘logic’ for the various species of ampliative inferences would de-

mand clarification, for most logicians, and a large number of philosophers, do not consider any

of the mentioned species of ampliative inferences as proper logics. They consider deduction

as the only species of logic, and in most cases deduction and logic are regarded synonymous.

The main objection to calling induction etc., synthetic inferences is that they have no valid

inference pattern. We shall argue below (§4.7 page 105) that this view is shortsighted and

not acceptable.

26K.T. Fann 1970, Peirce’s Theory of Abduction p. 7.
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An ampliative or synthetic logic, it is usually understood, is that inference where

the premises do not contain the conclusion. The way it is stated implies necessarily that

ampliative inferences are invalid. In fact most scholars, including those who argued for

ampliative methods in epistemology, such as for example Nickles, consider them to be indeed

invalid. We will however differ from such a view. We will elaborate our argument below.

It is found necessary to amend the usage of the terms to our advantage by giving

them a new definition. The main reason for this is that the characterization of ampliative

inference has so far been dependent on the characterization of what non-ampliative logic/s

are. Therefore, we attempt to give a positive characterization in independent terms, i.e., in

ampliative logic’s own terms.

We will use the term ‘ampliative’ for only those patterns of inference that generate

new concepts by abstraction, or construct new concepts out of the available ones by certain

logics of abstraction, such as induction and inversion, to be defined below. We consider that

an ampliative inference must involve the non-assertive mode, and therefore will be necessarily

conceptual. Being conceptual does not mean that no premises would be present in the

inference, but that the outcome or ‘consequence’ would be conceptual in nature. Accordingly

ampliative inference would be rated either as sense preserving or not. Unlike non-ampliative

logic, such as deduction, which are truth preserving, ampliative logics are sense preserving.

Thus, ampliative inferences would be rated in terms of meaning and not truth. They are

valid, if and only if no gibberish is produced. Further constraints can be specified with respect

to the kind of ampliative inference, such as whether it is induction or inversion.

We shall first provide below an argument to show that ampliative inferences such

as induction cannot be called invalid.

4.7 Induction and Validity

Induction has been attacked as a logical process by many because inductive infer-

ence is not valid. The problem of induction consists in whether inductive inferences are

justified/valid, and whether the conclusions arrived by inductive inference are certain. We

think that this is based on an incorrect formulation of what induction is.

In all these discussions the terms ‘valid,’ ‘follows’ ‘inference’ etc., are used in a sense

that is determined by deductive logic. Therefore, the problem of induction, we shall argue,

emanates from a predetermined notion of deductively valid inference.

We usually define valid inference as that inference when it is impossible for its

premisses to be true and its conclusions false, i.e., false propositions should not follow from



106 Chapter 4. Epistemology of Discovery

true propositions. How many kinds of inferences do we know that pass this test of validity

apart from deductive inference? None. Is there anything more to the definition of valid

inference than this? Deduction is defined as: A valid argument in which it is impossible

to assert the premisses and to deny the conclusion without there by contradicting oneself.

There are various valid rules of inference within deductive logic, but all of them are provable

as theorems in a (axiomatic) deductive system. Therefore, whatever is deductively valid is

also a valid inference, and vice versa. That is to say that the notion of deductive validity is

equivalent to a notion of validity.

Any inference that satisfies this condition of validity becomes non-ampliative. It

may not be wrong to say that the validity condition ensures precisely that a valid inference

be non-ampliative.

Therefore, when we say that inductive inference is not valid, we are not saying

anything more than that it is non-deductive, or that it is ampliative. It says that spades are

spades or non-spades are non-spades. Whoever thought that induction is non-ampliative? It

is its ampliative character that makes it stand distinct from deduction. How about saying

that deduction is not valid (inductively valid) because it is not ampliative? Surely it would

be preposterous.

Having captured the essence of a logical pattern, such as deduction, we have been

precluding other ‘living’ patterns of inference in our thought out of not just that class which

satisfies the essence of deductive inference, but from the entire class of inferences. This narrow

approach has been preventing us from capturing the essence of other forms of reason, that

we otherwise regularly employ.

We therefore think that the claim that induction is an invalid inference is a trivial

one, and cannot be an objection against induction. Unfortunately we seem to have so far

no definition of validity that is independent of deductive logic.27 A deductivo-centric notion

of validity cannot be imposed on induction.28 If deductivists have to show that induction is

invalid, then they must first prove that there exists a notion of validity, that is independent of

and not determined by deductive logic. Till then their claim that induction is invalid remains

27How reasonable would our argument be if we say that plants are non-living because they don’t have animal
essence? In fact that would sound quite ‘valid’ at a time when we would equate life with animality. But when
we find such qualities such as irritability outside the animal kingdom, we would naturally include plants too
along with many other beings, as living. Here, in the biological context, we could do so because and only
because, we have a definition of life that is independent of animality.

28Ironically it is deductivists who are behaving inductively. They had a class of inferences, which are
found to be characterizable by a common abstract notion of deductive validity, based on the principle of
non-contradiction. They called that class the class of valid inferences. Then they declared that all deductive
inferences are valid. Any inference that does not fall in this class of valid inference is non-deductive, and also
invalid, for it amounts to the same thing.
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a statement of the kind that non-spades are non-spades.

Do we have laws or principles of thought other than those already incorporated in

deductive logic? If we do, then we can claim to have obtained a ground for thinking of a

logic independent of deductive logic. The strength of deductive logic is based on its ground

in tautologies, the forms that need no content to validate them. We think that it is possible

to have similar grounding for ampliative logics. In what follows we will present our attempt

in this direction.

4.8 Induction as a Logic of Abstraction

We have argued in the above section that the usual accounts on induction suffer

from negative characterization, especially the arguments against induction based on validity.

In this section we shall first identify the distinguishable aspects involved in what we usually

call inductive inference and then show that abstractive induction, an aspect of induction to

be distinguished, can be shown to be based on a fundamental principle, which we call the

principle of excluded extremes.

We regard induction as an independent mode of ampliative inference for arriving

at knowledge. Philosophical problems of induction, according to our observation, arise due

to the characterization of induction as an inference that produces generalizations, that too

universal generalizations. Thus it is commonly characterized as a method of generalization

moving from statements about individual cases to an universal generalization. This dominant

statement mode has moulded the popular notion of induction. Having already stated that we

regard ampliative inferences as rooted in conceptual operations of thought, induction being

ampliative inference should also be rooted in conceptual operations, rather than statemental.

This is found necessary not only for a consistent view about ampliative inferences in general,

but also for a positive characterization of induction. The statement based characterization,

we will see, has misled philosophers, who could not see the principle upon which it is based.

Any ampliative reason must be a species of abstraction, for it is only in abstraction

that we can go beyond what is given. It is after all the conceptual richness that makes a

certain statement more powerful than others. Induction, being ampliative, must necessarily

be a method of abstraction or conceptualization. While abstraction is a necessary aspect of it,

another possible mode is associated with it, which is contained in the usual characterization

of induction as a method of generalization. It may also be called a method of generalization.

We prefer calling it ‘abstraction’ because abstraction, we will show, is a necessary aspect

of induction, while the generalization function of induction is a possible, and not necessary
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association. This characterization also allows us to move away from the perniciously dominant

statement mode of thought. To avoid confusion we will use the term inductive abstraction.

In what follows, we shall clarify and justify our proposal.

Deduction, we all know, is characteristically non-abstractive.29 For it does not

start from instances to instantiatables. Its characteristic movement is from instantiatables

to instances. It is a method of obtaining particular statements (instances) and hence it is

counteractive to abstraction. Induction involves, as we all know, a movement from particulars

to universals. We would prefer a neutral terminology and hence would say that induction is

a movement from instances to instantiatables.

Deductive inference is called valid because it is truth preserving. What should an

abstractive inference preserve for it to be valid? Truth or meaning? We propose that an

abstractive inference be regarded as valid iff it is impossible for it to generate gibberish. Since

meaning or meaninglessness are the proper attributes of concepts, which are ‘products’ of

abstractions, this is a natural choice. Since the products can take these dual values, accord-

ingly the process can be characterized as conducive to meaningful concepts or meaningless

concepts. Thus, we can say that a method of abstraction can be either + (valid) or - (invalid),

depending on whether we obtain an instantiatable concept or not.

One very common method of abstraction is the method of comparison, which can

be defined as follows. The method of comparative abstraction is defined in the familiar sense,

as a method of eliminating differences and ‘elevating ’ similarities from a given set of objects.

This method of comparative abstraction can be rooted in the principle of comparison, which

can be explicated as follows:

(1) It is impossible to compare an object with another in a world where every object has all

properties.

(2) It is impossible to compare an object with another in a world where no object has any

property in common.

(3) It is possible to compare an object with another only in a world where objects do not

share all properties, and where objects have some property in common.

These principles describe situations in three possible worlds, and say that the world (1) and

(2) are so extreme that comparison makes no sense. In world (1) all objects are identical,

29We are not saying that deductive logic is not abstract. It is after all an abstract form of an aspect of
reason. What we are saying is that it is not employed for the purpose of abstraction.
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and in the world (2) every object differs from every other object, a world of unique individ-

uals/identities. If Plato would try his method of dialectic in the first world he would obtain

only one Universal, which cannot be further analyzed into any genera or species. Similarly

if he tried his method in the second world, he would obtain as many Universals as there are

objects, and would again fail to find genus-species relations among forms.

However, if Plato would try his method in the third world, he would not only be

able to get Universals that are not as few as one, but also not as many as there are objects.

He would be able to find many tokens for each type, and since in this world objects share

properties, it is possible to obtain genus/species relations between the various types. There-

fore, the method of comparison, a method that works by finding differences and similarities

among objects, will not yield results in the worlds (1) and (2), while in the world (3) it would.

It is easy to see that (1) and (2) are absolute contraries, and therefore cannot be true

at the same time, i.e., they cannot be put together to yield any world. If we exclude the two

extremes we get a world which is a world of excluded extremes. The principle of comparison

has application in this world of excluded extremes, therefore this principle can be called the

principle of excluded extremes. Compare it with the principle of excluded middle, which is

also called the principle of non-contradiction. We will regard both these principles, i.e., the

principle of non-contradiction and the principle of excluded extremes, as equally fundamental

in their own right. Each is independent in the sense that one cannot be deduced from the

other.

If we make comparison a necessary condition of knowledge (as defined by Plato—

definitional or analytical knowledge), then we can rephrase the principle, again in the expli-

cated form, as follows:

(1) It is impossible to know in a world where every object has all properties.

(2) It is impossible to know in a world where no object has any property in common with

the rest.

(3) It is possible to know only in a world where objects do not share all properties, and

where objects have some properties in common.

We will base the method of inductive abstraction on this principle of excluded extremes (or

the principle of comparison). Note that there exists a difference between the method of

comparison and the method of inductive abstraction. The difference is that, for the latter

it is necessary that two or more properties show a possible linkage by being present in more

than one instance, i.e., correlational input is necessary, while for the former, correlations
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between properties is not necessary. Therefore we can say that the method of comparison is

presupposed in the method of inductive abstraction.

Let us also note that abstraction requires more than one object. Since differences

cannot be eliminated and similarities cannot be elevated from situations (1) and (2), it is

also impossible to count in those worlds. This is so because counting presupposes at least

one similarity in a set of objects, and also that all objects within the set be dissimilar in

some respect, including spatio-temporal respects. Since mathematics is impossible without

numbers, no mathematics is possible in a world where comparison is impossible. Therefore,

the world where comparison and induction are possible is also the world where mathematics is

possible. The other ampliative method, namely the method of inversion (to be introduced in

this thesis), is possible only in a world where mathematics is possible. Therefore, inversion

is impossible if induction is impossible. Thus, in the methodological framework that we

are proposing induction occupies a basal place. However, we shall see that the ampliative

potential of inversion is far greater than induction.

Since a possible abstraction is to move from objects to their characterizables, by

isolating the similarities and differences, an impossible abstraction is to move from nothing

to anything , i.e., from 0 to 1. This says merely that it is impossible to form a type if there

aren’t any tokens, and that it is possible to form types only if there are tokens. It is in this

logical circle of types and tokens that the method of abstraction is rooted. Breaking this

circle is not the objective of this essay, and therefore we shall not get into other possible

philosophical problems at the moment.

We know that the essence of deduction consists in the following statement: It is

impossible for the premisses to be true and its conclusions false, i.e., false propositions should

not follow from true propositions. In a similar manner, we can capture the essence of ab-

straction in the following statement: It is impossible by comparative means to obtain a type

which has no tokens. It is in this statement that the certainty of ampliative logics resides.

The method of inversion, we will see below, has the potential of obtaining types that have

possible tokens even before the tokens are given to experience. And it is here that the most

significant difference between induction and inversion resides.

Abstraction imposes the constraint such that unnecessary proliferation (amplifica-

tion) of types without tokens will not take place. Deductive logic, on the other hand, imposes

constraint in order to remain only in the world of types which are assumed to have tokens,

which in other words is to say: never move from truth to falsehood. We are assuming the

following general interpretation of a statement: A statement is nothing but a relation between



4.8. Induction as a Logic of Abstraction 111

type/s and token/s. A true statement is that which asserts that a token belongs to a type;

Since abstraction begins from tokens that are typable a valid abstraction is that which yields

a type. While abstraction is designed to yield meaningful types, deduction is designed to

preserve truth. Therefore, the former has to be ampliative, while the latter non-ampliative

or conservative.

It is important to see that abstraction is ambiguous, for there are two possible

inferences. One is that we can generate a type that has meaning, and second is that it

immediately yields a statement in that very context of generation. This is easy to understand

because for every type thus obtained, a statement asserting the type-token relation, can

be constructed. Thus, every abstraction necessarily yields a statement which is a trivial

application of the obtained type to those very tokens of the context of generation. For

example, an abstraction leading to the type ‘red’ applies truly and trivially to those tokens

that are red. Thus it is important to note that no context of generation can be actually free of

the assertive mode. The attempt to separate the two modes—assertive and non-assertive—is

based on logical reasons. The logical reasons will be made clear below.

Every object that deduction operates on must be either a statement asserting a

relation between type/s and token/s, or a statement asserting relations. Unlike deductive

inference, which is always a logical operation on statements, a method of abstraction does

not restrict its objects to statements. We shall look at abstraction based on relations in the

next chapter.30 Having shown how a method of abstraction can be understood as grounded in

the principle of excluded extremes, we shall now turn our attention to characterize inductive

abstraction.

The objects upon which inductive abstraction can operate can be anything typable—

statements, concepts, percepts, things, etc. We can abstract upon abstractions, at a level

higher than the method of comparison. This higher level of abstraction or comparison can

be called inductive abstraction.

The problem with the traditional treatment of induction lies in interpreting it as a

method of generalization. Given that x1 is φ, x2 is φ, x3 is φ, . . . , we infer, therefore

‘all xs are φ, or in the probabilistic tone ‘all xs are probably φ.’ We are not claiming that

generalizations cannot be obtained, by radically disagreeing with the traditional treatment.

We are however saying that induction, insofar it is an ampliative inference, should not be

interpreted as a method of generalization, but should be interpreted primarily as a method of

30Different kinds of statements can be obtained by the different possible associations between type/s and
token/s. At the moment we are not diverting our attention to other methods of deduction and other possible
methods of immediate inferences.
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abstraction, because the products of this ampliative inference are new concepts or new types.

Further we shall claim that since this abstractive aspect is based on the principle of excluded

extremes, this aspect of induction is necessary. Since types are not to be rated (valued) as

true or false—but as tokenable or not—we have another reason to separate the abstractive

aspect from the generalization aspect. Since every type that has tokens is nothing but a

meaningful type—meaningful concept—the method of induction has to be rated accordingly

as meaning generator , and not merely as a general statement generator. We shall elaborate.

An abstracted type can not only be applied to those tokens that were part of the

context of generation, but also to other tokens that are not part of the context of generation.

The ampliative power of abstraction lies in this projectability of concepts. Whether the con-

cepts are obtained by the method of comparison, or by the method of inductive abstraction,

the ampliative power is by virtue of its projectability. However, the concepts obtained by

inductive abstraction may or may not find more application in contexts other than the con-

text of generation. Just on this count that further projection of the concepts thus obtained

cannot be certain, the inductive abstraction does not lose its epistemic significance, or its

capacity to yield fallible knowledge. Having already abandoned infallibilism, we are no longer

looking for any methods that can generate infallible knowledge.

Projectability says merely that it is possible that all tokens of X are also the tokens

of φ. Or in other words, it says that it is possible that Xφ—the complex correlated type—

can (and not, will) have common tokens (instances). The conjunction of the two types, Xφ,

projects possible knowledge about the world, and not necessary knowledge.

One might say that we are trying to save induction by eliminating the necessary

mode of induction and rephrasing it in the possibility mode. We will show below that it

would be utterly insignificant for induction to be in the necessary mode, because, we shall

argue, it is necessary that induction operates in only the possible modality.

We have stated a few paragraphs above that the abstractive aspect of induction

is necessary because it is based on the principle of excluded extremes. In the paragraph

above this, we said that it is necessary that induction operates only in the possible modality.

Aren’t we presenting a contradictory view of induction? We think that there exists no

contradiction, because since induction is based on the principle of excluded extremes the zone

where inductive operations are significant is that where possibility is the ‘order of things’.

The point made here is that it is impossible that induction could operate significantly in the

necessary mode.

To see why it is significant for inductive abstraction to operate in only the possible
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modality, let us construct a world such that all inductive generalizations come out necessarily

true. That is whenever an object was known to have any property φ, ψ, ... , all such objects

would always possess that set of properties. What kind of world that can be? If we find

an object bearing properties φ and ψ for an entire day (or for any duration) in that world,

according to the rule of induction which never fails in that world, we can make a generalization

that that kind of object will have φ and ψ. In case those objects are found the next day

without any of the properties, then the induction would fail. But we have stipulated that

the world be such that induction can never fail. Therefore it is sufficient for the knowledge

maker in that world to keep on looking and noting all correlations between properties. If

any two properties happen to be together they would be together forever. All that our ideal

scientist need to do is just to make note of all instances of linked properties. Can we expect

any contingent events in that world? Will it be possible for an object to take on a property

today, another tomorrow? We will have to answer negatively because if such an event is

possible then induction would fail in that world.

To make things clearer let us construct another possible world, where induction

would never come out true. All relations would be contingent in this world. The only possible

way of knowing in that world would be to experience individually every thing, otherwise no

complete knowledge would be possible. The knowledge maker cannot infer anything from

anything, for no connection is necessary.

The world that we live in is neither of the first kind, nor of the second kind. It is not

of the first kind because we have so much evidence to prove that induction, interpreted in the

necessary mode, fails. It is also not of the second kind because some of the generalizations

achieved inductively have not been proven false. Therefore, the world we live in is a world

where inductive generalizations come out true in one case and fail in another case. Our

objective here is not to explicate the nature of this world, which is a metaphysician’s task.

Since we are playing methodologist now, our objective is to show that induction would be

significant only in the middle world, whether it is ours or not. Why? Because we have seen

that if inductive generalizations are always true, then it would be insignificant as a method.

Since input to induction comes exclusively from experience, under the two above mentioned

cases induction has nothing more to say than what experience gives. All that we need is to

experience and that is the end of it. There is no possible role for any inference or method

under such situations. The same is true of the second case above, where induction is always

a failure.

We need a method for searching truth only if truth is not manifest. We need a
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method like induction, in the non-necessary mode (with possible projectability), only in

such a world where mere experience is not sufficient. Since the middle world is such a

world, induction makes sense only there. Since experience is insufficient we need to make

some inferences to reach the world. The objective of inductive inference is to know the

possible linkages, because there exists a chance that some might turn out to be necessary.

We therefore think that induction is a method by which we can arrive at possible linkages

between properties, namely correlations. Through the method of induction we cannot arrive

at certain or necessary knowledge, but only possible and fallible knowledge.

Therefore a proper inference of induction should be: Given x1 is φ, x2 is φ, x3 is

φ · · · we inductively infer that

(1) It is necessary that Xφ is a meaningful conception.

(2) It is possible that all xs are φ.

(1) is inductive abstraction, while (2) is inductive generalization. We have included both

under one head of induction because they are obtainable from the same input. Here lies the

ambiguity of (the context of) induction.

The most important epistemological reason for separating the abstractive compo-

nent from the generalization component of induction is the following. In the event of a

counter instance that falsifies (2), (2) alone would be rejected, and this act of falsification

would not affect (1). The reason is obvious. Since (1) is a conception, it cannot become

meaningless, i.e., cease to be a valid notion just because the properties are not necessarily

linked. The only condition of concepts to be meaningful is that they have instances or to-

kens. For example, ‘All plants are green’ is an inductive generalization. When it is found

false by instances of plants that are non-green, the conception of ‘green-plant’ has not be-

come meaningless. ‘Green-plant’ continues to enjoy the status of a taxonomic category, for

a large number of properties are found linked in this natural class. Neither the cognitive

significance nor our knowledge became weaker by the event of falsification. In fact every act

of falsification enhances our knowledge of the particular.

One of the upshots of this view is that falsification means nothing more than an

incorrect application of a concept. Even if an assertion is falsified, the concept involved in the

assertion cannot be rejected altogether, if and only if the concept was obtained by inductive

abstraction. If the conceptions are obtained inductively, then in any case they are bound to

stay, whether they continue to have true projection or not.

Can it happen that the conception thus formed, Xφ, becomes meaningless, in which

case (1) will not be necessary? The sufficient condition for a concept to have meaning is that
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it has at least one instance. Since the concept is abstracted from the given (known) instances,

it is impossible that the thus formed conception lacks any meaning. Hence the abstractive

inference is necessary.

The problem of the certainty of inductive generalizations will be regarded as ill-

posed because induction, as shown above, is by nature meant to yield possible knowledge

and not necessary knowledge. Is possible knowledge, knowledge? Why not? Indeed it is

our thesis that scientific knowledge is knowledge of the possible. Scientific knowledge is not

a system of necessary propositions and certainly not a system of tautologies. For science

to have any empirical value, in the sense that it can make any significant assertions, it is

necessary that it speaks about the possible truths, and not necessary truths. This is another

way of expressing what, we think, Popper says that falsifiability is the hallmark of scientific

knowledge. It is ironical that it was Popper who fought against induction. For a fallibilist like

Popper, who believed that truth is not manifest and that science is not a system of necessary

truths, the problem of induction should have become ill-posed. Our point is that the problem

of induction ceases to be a significant problem precisely because we have already abandoned

infallibilism.

Can we call inductive inference a logic? If validity of the inference is the criterion

of a logic, then we shall have to first agree on the definition of validity. As observed above

we cannot agree to a deductivist’s definition of validity as truth preserving, and the reasons

are specified above. But, since any ampliative inference is sense preserving, we can define a

wider notion of validity that can apply to both inferences. A valid inference be that which

preserves some value of the objects involved in an inference, whatever that value be. Since

intuitively we understand that logic has something to do with thinking pattern, the values to

be preserved would be those attributable to any thought object. Statements, and concepts

are considered examples of such objects, where for the former the positive value attributable

is truth, and for the latter it is meaning. We, therefore, consider inductive abstraction a valid

inference, and therefore a logic. Our major presupposition in the thesis is that meaning and

truth are logically distinguishable epistemic values. If one were to show that they are not so

distinguishable the thesis, needless to say, loses ground.

It should be noted that our objective is not to propose that the inductive method is

a sufficient condition of scientific knowledge. To generate scientific knowledge we need certain

other methods such as the method of inversion, to be explicated in the following chapters. It

is found necessary to defend a version of induction as a possible source of scientific knowledge,

because we want to show that the emergence of fallibilism gives new life to induction provided
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we interpret induction the way we did above. It is thus our objective to show that abandoning

infallibilism has no necessary consequence of abandoning generativism. We have tried to

argue that it is necessary for an ampliative inference to generate concepts, which are neither

true nor false, but are applicable (projectable) or not. Therefore generativism of concepts is

indeed a possible philosophical option.

It may be objected that we are surrendering and weakening epistemology by doing

so. On the contrary we will show that epistemology would regain lost ground only if we

invert our epistemological concerns from truth to meaning. Along with the rise of fallibilism

in recent times, there is another trend on the rise, called the semantic tradition. Though the

historians of philosophy have not yet traced the full development a commendable beginning

has been made recently by Alberto Coffa.31 We cannot here discuss the development of

semantic tradition, for that is beyond the scope of this essay.

4.9 Nickles on Discovery Logics

Of all the defenders of generativism the most notable views are those of Thomas

Nickles. Nickles has been defending the discovery program for more than a decade, and is

possibly responsible for keeping the debate alive. Most of his contributions after 1980 have

a common motivation, which is to revive the epistemology of discovery, which—after the

advent of consequentialism—has been regarded as abandoned. Apart from Nickles there are

many others who form a company of thinkers who think that an epistemology of discovery

is possible, and have put forth their arguments.32 Nickles has reviewed the literature more

or less comprehensively. Therefore it would be a repetition to review already well reviewed

works. Instead, we will comment critically on the most recent views of Nickles (1990). By

doing so we will also get an opportunity to further clarify our own position regarding a large

number of questions that we have not considered in the above account. Since most of the

views taken by Nickles are based on the several objections against a logic of discovery, it is

necessary to respond to them. However, the limitation is that unless our thesis on possible

logic of inversion is sufficiently developed it would not be possible to argue our position.

Therefore, we shall be content with a summary of Nickles’ position, and also a summary of

our matching position to give an indication to the reader where are we heading.

31Cf. Coffa 1991, The Semantic Tradition: From Kant to Carnap.
32While C.S. Peirce and later N.R. Hanson have been the classic ‘friends of discovery’, H. Simon, P. Achin-

stein, M.W. Wartofsky, S. Toulmin, T. Nickles, E. Zahar, N. Koertge, M. Pera, R. McLaughlin, D. Shapere,
P. Thagard, G. Gutting, R. Blackwell, M. Curd, K. Kelly, among many others, have been forwarding various
versions of epistemology of discovery.
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According to Nickles:

(1) there is no Logic of Scientific Discovery, but there are logics of discovery!
There is no logic of discovery in the sense of a single logic underlying Scientific
Method; but there do exists many logics of discovery, even in the strong, histor-
ical sense of actual use. (2) While there is no content-neutral logic of discovery,
there are many rather local, substantive or content-specific methods that merit
the name ‘discovery logics’. (3) The new discovery logics that emerge in times
of major historical breakthrough nearly always postdate the breakthrough. Such
a logic is not the cause or explanation of the corresponding discovery; rather, it
is a a methodological part of the discovery itself. Typically, discovery logics are
rational reconstructions of results arrived at by more haphazard routes. They are
worked out by critical reflection on how the substantive problem solutions were
originally achieved and how these methods might be streamlined or otherwise
improved. They are what I term discoverability logics. They are idealized discov-
ery procedures—methods that could have been employed to make the original-
breakthroughs if (contrary to fact) we had known then what we know now. These
discoverability logics reduce problem solving in that domain to routine and can
sometimes provide the basis of new, original discoveries.33

The epistemological justification for the program, according to Nickles consists in the fact

that “an adequate confirmation theory must include a dose of generative justification.”34

Further, unlike consequential testing,

generative reasoning flows from what we already “know” (so-called background
knowledge or positive science) to some other claim or problem solution. . . . The
generative strategy is to provide empirical support by direct construction of the
claim from what we already, fallibly know, while the consequentialist strategy . . .
can only be indirect and eliminative.35

Nickles’ line of providing epistemic justification is contained in this powerful statement: “the

strongest form of justification is an idealized discovery argument.”36 He distinguishes origi-

nal discovery arguments from discoverability arguments. Generative justification consists in

offering one or more discoverability arguments.

The final argument amounts to a potential discovery argument in the sense that
it constructs the theory (largely) from what is, by now, already known. Hence
the counterfactual: had scientists known then what they know now, they could
have discovered the original idea in just this way.37

33T. Nickles 1990, ‘Discovery Logics’ Philosophica p. 901.
34T. Nickles 1988, ‘Truth or Consequences?: Generative Versus Consequential Justification in Science’ PSA

1988 p. 393.
35Ibid, p. 394.
36Ibid.
37Ibid .
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Nickles, however, shares the position held by Pierce and pure deductivists’ spirit by conceding

that there are no content-increasing (ampliative) valid inferences.38

These thoughts deserve complete attention and assessment. Though our comments

in this section will be brief we will return to them in the rest of the essay, and finally in the

last chapter of the thesis we make a final presentation in the form of a conclusion. In order

to make it clear that we take a position different from that of Nickles we shall briefly state

the following points that match with the propositions of Nickles.

We claim that, (1) though there are logics of discovery, their number is limited,

and is not equivalent to the number of problem situations or domains of inquiry; (2) logic of

discovery, or for that matter any logic, has to be content neutral; (3) though it is necessary

that all logics of discovery should be capable of providing rational reconstructions, their

testing ground is in the context of learning/teaching, for historical context can never be

repeated; (4) there are content increasing valid inferences; (5) justification of knowledge is

double pronged, the first prong concerns the context of generation, where we go from the

known to new knowledge, and the second prong relates to the context of application, where

the move is from the new knowledge to its applicability to new situations.

Having already seen the possibility of valid ampliative inferences we disagree with

Nickles on the point that no such inferences are possible. Apart from the method of com-

parison and inductive abstraction as valid inference patterns of yielding meaningful fallible

knowledge, we will see how another logic, called a logic of inversion, can also be a valid

ampliative inference for construction of scientific knowledge. This logic of inversion will be

founded on another fundamental principle called the principle of included extremes which be-

comes the basis of the possible logic of inversion. Since there are possibilities of developing a

general notion of validity, generativists should not accept the narrow and deduction centered

views of validity.

How many logics of discovery are there? Can logics of discovery be content neutral?

These questions are interdependent. If the answer to the latter question is positive, then

there cannot be many logics of discovery. If negative then there are many logics of discovery.

Because if content determines what method be applied then there are innumerable contents

as there are problem contexts or at least domains of inquiry, in the sense of Dudley Shapere.39

Nickles argument appears convincing.

The reason why a completely content-neutral (a priori) method of discovery is

38Nickles 1984, ‘Positive Science and Discoverability’ PSA p. 21.
39Cf. Shapere 1977, ‘Theories and Domains’ in Suppe 1977, The Structure of Scientific Theories, pp. 518–

599.
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apparently not possible for empirical science is that such a rule could teach us
nothing about our world. A logic of discovery is an amplification device. Apply
it to some knowledge (or to hypothetical claims) and it generates further claims.
Since a completely neutral rule is one incorporating no knowledge about our
particular universe much less about any particular scientific domain, we cannot
expect a neutral ampliative rule to improve on blind guessing. And anything
deserving the label ‘logic of discovery’ must do that.40

However, we think that, ampliative logics can, and should be content neutral. We think that

the logic of inversion that we are about to propose can be formulated as a content-neutral

logic, and therefore reduces the number of logics necessary for discovery.

It is not necessary for a logic to provide any content, what is needed is that it should

provide the form. However, if it is an ampliative logic it should be providing us the form of

possible formations. What basis do we have to think that there exists no form or at least

few form/s to the methods of formations (constructions)? Most modern, and highly abstract

algebraic theories of mathematics are indeed content-neutral.

Nickles’ position seems to be challenging Kant’s claim that synthetic knowledge is

possible a priori . He says that he is following the naturalistic epistemologists in denying the

existence of a completely neutral logic of discovery. He goes on to show that mathematical

theories are not content neutral. He quotes Einstein’s famous remark approvingly:

As far as the laws of geometry refer to reality, they are not certain; and insofar
as they are certain, they do not refer to reality.41

He argues that the syntactical instrument like mathematics

can be usefully applied only to empirical domains of knowledge (or conjectures)
that are already highly organized in just the right sort of way.42

We agree here, but we conclude some thing else. If empirical domains of knowledge are highly

organized before syntactic instruments start ‘playing’, then the challenge for a believer in

logic of discovery consists in finding out if there are any method/s of organizing empirical

domains of knowledge. The use of the expression “logico-mathematical method” ( in p. 909),

and interpreting mathematics as a “syntactical instrument”, suggests that Nickles considers

logic to be necessarily syntactic. We have argued in the previous sections, to disprove this

dominant view, that semantic methods (valid methods of ampliation) make sense. Methods

of abstraction, including mathematical ones, are not syntactic, but they are methods of

constructing the forms that various possible constructions can have.
40Nickles 1990, op.cit. p. 907.
41Ibid p. 910.
42Ibid .
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The position we will defend is that there are methods of generating meaningful

concepts. The input for this method/logic will be taken from what is already known. That

way, there is already content to begin with. However, if the method is not determined by the

nature of the content, then the method can be regarded content-neutral. Since it is precisely

in this sense that deductive logic is content-neutral, we think that a logic of construction can

also be content-neutral. Keeping in mind the tension between the ampliation and content

neutral logic we will develop the rest of the thesis, and shall return to the issue towards the

end.



Chapter 5

Nature and Structure of Scientific

Knowledge

It is argued above that generativism need not be and should not be abandoned,

for the arguments against generationism are not convincing. It is suggested that ampliative

inferences of a valid kind can be articulated. Since it is claimed that the outcome of a valid

ampliative inference is a meaningful concept, the following questions would naturally arise:

What has meaning to do with scientific knowledge? Is it sufficient for scientific knowledge

to be meaningful? What is worthy of science if it is only meaningful and not true? After all

metaphysics is also meaningful, but not scientific. How is meaning epistemically significant

for scientific knowledge? In order to show that generativism, especially the version of gener-

ativism that we are going to defend here, would be a significant proposal, questions of the

above kind should be answered satisfactorily. All these questions can be answered more or

less satisfactorily by a clear notion of scientific knowledge. In what follows we will develop

our thesis on the nature and structure of scientific knowledge.

We have talked about induction as a method of abstraction, but we also hold the

position that induction cannot be a sufficient means of generating scientific concepts. How-

ever, we have mentioned that another sort of ampliative inference called inversion would be

able to generate scientific concepts. What then are scientific concepts? Is it possible to pro-

pose any demarcation criterion between science and non-science? If we are not clear on these

questions, then talk of generating scientific knowledge and proposing a logic of discovery for

such a knowledge does not make sense. Our discussion of this problem begins in this chapter,

and we shall continue to explore for an answer till the end. The essential framework of our

exploration will be elaborated in this chapter.
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The problem of the nature and structure of scientific knowledge is one of the deeply

involved problems of philosophy of science. The problem mainly consists in answering pri-

marily, though not exclusively, the question: What are scientific theories? Are they axiomatic

calculi in which theoretical terms and statements are given a partial observational interpre-

tation by means of correspondence rules? Is it possible to delimit our analysis of theories to

a rational reconstruction of fully developed theories? Or since the question is intimately tied

to language and experience, should all the epistemic factors governing the discovery, develop-

ment, and acceptance or rejection of theories be considered under one garb of weltansshauung

or Lebenswelt? Are not theories extralinguistic entities, like propositions, which may be ex-

pressed by various linguistic formulations? Are they not equivalent to models isomorphic to

physical systems or states? ...

Each question above presupposes a particular view of scientific theories, and the

various ways in which these questions are formulated indicates the complexity and multi-

faceted nature of the issue. None of the proposals can be rejected outright, unless one

delimits one’s purpose at hand. Keeping in mind that our purpose is to understand the

problem of generation and application of scientific knowledge we shall confine ourselves to

the methodological and epistemic aspects of the issue.

5.1 Framework of Analysis: The Semantic Approach

A number of attempts have been made in answering the question of the demarcation

of scientific knowledge from other forms of knowledge. We have seen in Part-I how variedly

scientific knowledge (or episteme) was defined by different thinkers. Different varieties of

criteria have been proposed, each of them making an effort to capture the essence of scientific

knowledge. Some of the criteria are methodological, some are based on the substantial nature

of the elements of knowledge, some are based on the nature of the sources, some on the

semantic and structural features of the knowledge etc. But we have also seen how changes

in view regarding the objects of knowledge caused changes in the nature of the methods

employed. Most of the proposals were failures, but only if viewed as sufficient conditions of

science. That is to say that none of them can be rated as completely invalid characterizations.

It is not an easy task to achieve a synthesis of these approaches either. Therefore, it is

appropriate to think that the problem cannot be understood completely from any one of the

approaches. However, in such a situation we should make a choice based on good reason

guided by the purpose at hand. It would also be a good reason to choose to work with

such an aspect of scientific knowledge that could find at least definite linkages with other
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aspects. Therefore, based on the two good reasons, our choice is to identify certain necessary

elements of scientific knowledge that fall within the scope of one broad thematic-pair form

and content. The pair ‘form and content’ has been a philosopher’s favorite. But, with regard

to the present problem, certain other thematic-pairs have begun to dominate and control the

discourse in the present century.

The view that we shall develop can be better stated by comparing it with the most

popular approach in the philosophy of science. Most of the recent studies in the century

centered their discussion of the subject based on the thematic-pair observable (factual) and

unobservable (theoretical). For a century or so the philosophical problem par excellence has

been to understand the relation between theory and fact. The problem is often posed as the

problem of ‘theoretical terms’ and ‘observational terms’. Though a number of interesting

problems are posed, none of them could be resolved. The questions “What is a fact or a

theory?” or “What is observable and unobservable?” remain unsolved problems to this day.

Hilary Putnam wrote in 1962 that

the almost untouched problem, in thirty years of writing about “theoretical terms”
is what is really distinctive about such terms.1

We could safely substitute ‘thirty years’ by ‘sixty years’ today, because none of the explica-

tory attempts that were made from 1962 to this day are completely successful. However, new

proposals have been made. Most interestingly, some of the new proposals consider the com-

plexities involved in the observational-theoretical distinction as extraneous to an adequate

analysis of scientific theories. For example Suppe says:

The fact that science manages to go about its business without involving itself
in such complexities suggests that the distinction is not really required or pre-
supposed by science, and so it is extraneous to an adequate analysis of scientific
theories.2

This is the view shared by the proponents of the semantic approach of scientific theories.

The view escapes some of the problems rather satisfactorily. However, we cannot therefore

say that the original problem—the problem of observation-theory distinction—is entirely ill-

posed. There is a significant part of the basic problem, which is to account philosophically for

the fact that science postulates processes and entities not directly accessible to observation

in order to account for the phenomena that are directly observable. This part of the problem

1“What theories are not?” in E. Nagel, P. Suppes, and A. Tarski (Eds.) Logic, Methodology and Philosophy
of Science, p. 243.

2Suppe 1972, “What’s Wrong with the Received View on the Structure of Scientific Theories?” Philosophy
of Science, p. 10.
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persists even if we suppose that the original problem, as stated by the positivists is ill-

conceived. Bas van Fraassen, another proponent of the semantic approach, states that

science aims to find a true description of unobservable processes that explain the
observable ones and also what are possible states of affairs.3

It is one of the essential features of scientific theory that it should have a capacity to deal

with possible states of affairs. We therefore think that though science begins the ‘journey’

in search of principles accounting for problematic observable phenomena, it in the process

constructs or creates certain structures which we normally call theories, that could account

for not merely the observed phenomena, but also observable (not yet observed) phenomena

and unobservable (in principle) ‘phenomena’ as well. Thus apart from what is actual, it could

generate and account for “possible states of affairs”. Here lies the constructive capacity of

scientific activity.

The question arises, if theoretical constructs are so essential to science then why did

the positivists take the project of eliminating them so seriously? We think that they have

misunderstood scientific theories to be abbreviations or nominal definitions of a collection of

basic statements.4 They took theories to be merely new expressions introduced for pragmatic

reasons. Their philosophical basis is rooted in confusing theories with nominal or formal

definitions.

To define a sign formally is to adopt it as shorthand for some form of notation
already at hand. If the sign has a preconceived meaning, as in the present in-
stances, and the definition suits that meaning, then the definition amounts to an
elimination: it shows that the sign is dispensable in favor of those occurring in
the definition. To define a sign is to show how to avoid it.5

This maxim (italicized sentence), is the basis of the positivists’ motive, as well as confusion.

They would have been right if scientific theories in fact are definitions in the above sense. But

they are not, because the constructed definitions always have more ‘capacity’ than what nom-

inal definitions could contain. This extra capacity contains the “possible states-of-affairs”.

We will argue in the next chapter that scientific knowledge contains constructive definitions,

which are formed by a special logical relation, that we shall call inversion, that brings to-

gether the problematic observable phenomena and the unobservable (the created) in a single

ineliminable form or construction. Their elimination would mean the elimination of the

3van Fraassen 1980, The Scientific Image, p. 3, italics ours.
4We have seen above (§3.3 70 the Machian influence on logical positivists.
5Quine 1951, Mathematical Logic, p. 47, italics ours. Quine uses the term ‘formal definition’ while Hempel

uses the term ‘nominal definition’, but they meant the same. Cf. Hempel Fundamentals of Concept Formation
p. 658.
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essence of scientific knowledge. Only when description of phenomena are couched in these

constructions, can phenomena be scientifically described vis á vis non-scientific descriptions.

Most scientific facts are not raw data, but “hard-data”.6 For the positivists facts are basic

observation statements, and not “hard-data”. Scientific theories, according to the semantic

view, are not applied to events simpliciter, but to events under a particular description—

structured facts. This amounts to saying that scientific observations, and not necessarily all

observations, are ‘theory’ laden, or dependent on certain constructions.

Another necessary point to note is that science does not and possibly cannot deal

with complex phenomena all at once, but usually with limited kinds of phenomena and that

too by employing a few of the parameters abstracted from them. That is, the abstracted

parameters that are ‘lifted’ from the phenomena are supposed to be idealized representations

or constructed images of the phenomena given in direct experience. But this is not possible

by inductive abstraction (§ 4.8 page 107) as the positivists believed. Science begins with the

set of idealized objects and remains there. This is precisely the reason why scientists have to

create an experimental world that looks like an idealized world, and make observations in that

‘artificial’ world. Thus idealization and experimentation go hand in hand. In cases where real

experimentation is not possible, for whatever reasons, scientists are often involved in thought

experiments in order to simulate such possible worlds where their ideas appear meaningful.

The history of science provides ample evidence of the fact that the rise of experimental science

was necessarily associated with idealization and thought experiments (Cf. § 2.1 page 47 and

§ 8.3 page 255).

Not only are the idealizations constructed by scientists non-inductively obtained,

but also the obtained constructions can generate a set of “physical systems”, consisting of

both “logically possible” and “causally possible” systems. Suppe says that scientific theory

must specify which of the logically possible physical systems are causally possible.7 We think

that it is this specification that is subject to either falsification or verification. It is in this

context of identifying and choosing between the logically possible and the physically possible

that the difference between a pure mathematician and natural scientist lies. Here lies the

distinction for example between Lagrange and Einstein or possibly between Poincare and

Einstein, with regard to the discovery of the relativity theory.

Thus the semantic approach differs from the positivists’ thesis on both the issues of

what scientific facts and what scientific theories are. There are other important reasons that

are connected with the above, which have to do with the linguistic thematic-pair syntax and

6Suppe, op.cit.
7Suppe, Op.cit. pp. 11–14.
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semantics.

If we look at the problem retrospectively, it appears that the issue can be looked

at as a debate between the syntactic and semantic approaches. Various versions of the

positivist views were held mainly between the 1920s and the 1950s. Suppe calls them the

various versions of the ‘Received View’. From the 1950s to the 1960s the view has been facing

many attacks, and it was only after that the concrete proposals of the semantic view were

advanced. Though the distinction between syntax and semantics began to take ground in

linguistics and language analysis soon after Gödel and Tarski, it took some time to trickle

down to the problem of reconstructing scientific language.8

The Semantic approach, in the form of a general semantic analysis of scientific the-

ories, was initiated by Patrick Suppes as an alternative to the Received View after the 1960s

based on the model-theoretic technique as against the axiomatic technique. Earlier to this

some isolated attempts had been made. For example, von Neumann’s proof in 1955 that

matrix formulation and wave mechanics formulation of quantum mechanics are equivalent

(semantically), made use of this approach.9 E. Beth, in 1948, had also developed semantic

analysis for scientific theories and argued that this approach is more fruitful than the ax-

iomatic approach.10 However it is mainly due to the attempts made by Suppes and later by

van Fraassen, who attempted an extension of Beth’s approach in 1970, that the approach

took off the ground and developed as a plausible view of scientific theories.11 In fact the

language used by the followers of semantic approach, such as models, systems or states (to

be elaborated below), is rather close to the working scientists vocabulary, specially those

working in the theoretical sciences. This is because of the adaptation of mathematical char-

acterization of scientific theories rather than the remote logical vocabulary in relation to the

working scientists language of positivists. At last both philosophers and scientists began to

speak a common language!

For the purposes of developing an alternative generativist framework, we will argue,

it is not only necessary to abandon the Received View, but also to adopt a view similar to

that of the semantic approach. However, we are also benefited by the developments made in

this connection by Stegmüller.

Stegmüller looks at the matter in a different way from that of the defenders of the

8This information is based on Suppe’s elaborate introduction to the problem in Suppe 1977, Chapter I -
III, p. 17ff.

9J. von Neumann, Mathematical Foundations of Quantum Mechanics.
10E. Beth “Semantics of Physical Theories” in Freudenthal 1961, The Concept and the Role of Model in

Mathematics and Natural and Social Sciences.
11van Fraassen 1970, “On the Extension of Beth’s Semantics of Physical Theories” Philosophy of Science,

37, pp. 325–339.
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semantic approach. He classifies the views as statement and nonstatement views.12 Although,

there is some difference between the classes picked out by the two ways of classifying, the

affinities outweigh differences between the nonstatement view and the semantic view. (The

nonstatement view of Stegmüller is elaborated below (§ 5.3 page 132)). The only mismatch

between the two manners of classifying the views is that Stegmüller incorporates the struc-

turalist view of Suppes, which later developed into what we are presently calling the semantic

approach, as a statement view, while all other statement views can be called syntactic without

problem. That is to suggest that statement views minus the semantic approach is identical

to the syntactic approach. We suggest that Stegmüller should identify his view as the seman-

tic approach, or as one version of the semantic approach, or as a version of structuralism,

rather than calling it a nonstatement view, because the semantic approach already has suffi-

cient room for appraising conceptual constructions. Further Stegmüller and Suppes are both

structuralists anyway. However, Stegmüller’s view, as we shall see shortly, is undoubtedly

richer than the versions of the semantic approach suggested. We are influenced by both the

semantic approach and the nonstatement view, and we will be working toward a view of

scientific knowledge that could be seen as what could emerge after further developments and

simplifications of both the views are effected.

As already indicated, both the semantic approach and the nonstatement view fol-

low the vocabulary of models and physical systems. According to these views, models and

physical systems are part of the anatomy of scientific theory, while that of the Received

View is described in terms of theoretical and observational terms. In what follows we shall

characterize models and physical systems.

5.2 Models and Physical Systems

Science describes and explains the world in indirect ways, i.e., its access to phe-

nomena is never direct . We will presuppose this as an essential aspect of science, without

further argument at this stage. To avoid the possibility of misunderstanding, we would like

to warn the reader that the distinction between direct and indirect made here is not on the

basis of sensory experience, but on the basis of whether a description is made dependent or

independent of a structure. What precisely is the nature of the structure shall be elaborated

below.

As mentioned already, when scientists study ‘something’, an object of investigation,

12Different versions of statement views and nonstatement views are identified by Stegmüller 1979, The
Structuralist View of Theories: A Possible Analogue of the Bourbaki Programme in Physical Science p. 4ff.
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they do not describe all aspects of this ‘something’; rather they select by way of abstraction

certain parameters, among others, from this ‘something’. The abstraction consists in orga-

nizing (structuring) the selected parameters into a system, which are ‘lifted’ from the rest

of the ‘something’. Such systems, as some would like to call, are idealizations. Only under

experimental conditions, and with considerable approximations, can these systems be real-

ized in the actual world. When phenomena are described using these structured parameters,

the meaning of the description is not independent of the constructively visualized system or

structure, and hence it is an indirect description or observation. Since scientific description

cannot be true of the world without the involvement of idealization, the semantics of scientific

knowledge demands counter-factual interpretation. Let us call a description scientific if and

only if it is intelligible (meaningful) only through indirect (structure dependent) means. Now

since a scientific assertion accurately describes ‘something’ only under ideal conditions, as

stipulated by the structural relations, it is not true under normal circumstances. The cir-

cumstances in which a scientific assertion is entirely correct or true is called a model. This

definition of a model is a micro-version of the usual definitions of a model. Differences with

the usual definition, and the reasons for deviation are given below.

A physical system can be viewed as an idealized replica of the phenomena, which

can be specified solely in terms of the selected parameters.13 Examples of physical systems

abound in science, and can be found in all disciplines: different kinds of instances of New-

tonian particle systems, atomic system, dynamic systems such as oscillating or vibrating

systems, thermodynamic systems, ideal gas systems, chemical equilibrium systems, physi-

ological systems like the nervous, endocrine, circulatory systems, etc. However, there are

other simpler and more general systems that scientists regularly employ at various levels of

theorization, such as lever, balance, floating bodies, pendulum, etc. The role played by these

simpler systems in the initial stages of the development of scientific knowledge is elaborated

in greater detail below in Part-III. Most reconstructions of scientific theories have been at-

tempted for relatively complex theories such as classical particle mechanics. We think that

scientists started constructing, defining and using systems much earlier than the 17th cen-

tury and can be traced back to the early origins of geometry. Our attempt in the present

thesis will be to understand the genesis, development and the structure of simpler systems,

by applying the semantic approach.

The function of models, in relation to physical systems, can be stated as follows:

Models are employed to represent the behavior of a certain kind of physical system. Models

13Suppe 1972, op.cit. p. 224.
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are usually devised as mathematical structures whose characteristics are obtained or specified

by definition. For example, a Newtonian particle ‘system’ is regarded as a model because it

is a structure that satisfies the three laws of motion and the law of universal gravitation.14

Here the term ‘system’ appears in the name of a model. This terminology is unfortunate,

but since most of us are used to calling most models by the name ‘system’ we shall continue

to use the same terms. Whatever the term be, our criteria for characterizing models and

physical systems is precise, which will be elaborated below.

Models can be defined with various degrees of complexity. For example, a Newtonian

model can be defined for a 2-body system, which can be used to represent the physical system,

Earth-Moon system, or it can be defined as a general model for a n-body system that can

be used for a range of simple to complex physical systems. Given certain constant values to

the parameters (initial conditions) the exact behavior of the physical system can be known

for certain systems deterministically, while for others probabilistically, though in both cases

this knowledge holds accurately only for an ideal physical system.

Though very general models can be constructed we will attend to very simple models,

and also to very simple physical systems. This makes our problem of understanding the

process of model building easier. Though the models and the systems that we will choose

are simple they have sufficient complexity so that whatever we could state for them could

without much problem be generalized to more complicated models and systems. However,

we have other reasons for choosing simpler elements for analysis. Some of the reasons can be

spelled out here, while certain others will be stated in the process at appropriate places.

Earlier (page 128) we have stated that the circumstances in which a scientific asser-

tion is entirely correct or true is called a model, and also mentioned that this definition is a

micro-version of the usual definition. The difference can be stated by comparing it with van

Fraassen’s definition, which is as follows:

A model is called a model of a theory exactly if the theory is entirely true if
considered with respect to this model alone.15

While we are talking in terms of ‘scientific assertion’, van Fraassen is talking in terms of a

‘theory’. The motivation in deviating from the usual definition is not fundamental, though

highly significant for our purpose. It is, first, to make the units of semantic analysis of scien-

tific knowledge simpler. Secondly and most importantly, our attempt is to use terminology

that needs least mention of the expressions ‘theory’ or ‘theoretical’. The term ‘theory’ is

14Cf. Giere 1984, Understanding Scientific Reasoning, pp. 80-81.
15van Fraassen 1989, Laws and Symmetry, p. 218.
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as problematic as the term ‘law’, and more or less for the same reasons. Van Fraassen, has

argued rather convincingly that without using the problematic term ‘laws’ we can talk about

and appraise scientific theories.16 We are proposing to move a step further, in search of neu-

tral terminology, by suggesting the use of the term ‘scientific assertion’ in place of the term

‘law’ (though not always in place of the term ‘theory’). We see a possibility of describing the

structure of scientific knowledge in terms of definitions, models, physical systems, scientific

assertions etc., without leaving much residue, hence without requiring to talk in terms of

‘theory’. The usefulness of our proposal towards acquiring a neutral vocabulary will be made

clearer as we develop our views.

The first reason for choosing a smaller unit of analysis is based on the needs of

a generativist. The usual examples of scientific theories, such as Newtonian mechanics,

electromagnetic theory, relativity theory etc., are ‘huge’ structures, and it is therefore difficult

to comprehend them by means of reconstruction in a significant manner. Besides, looking

at these theories as one unitary or holistic structure has led to problems of a serious nature,

specially in understanding the relationships, such as reduction, between different theories.

We have also come to know that all applications do not involve the entire structure of the

theory. More often very small components of the theory are employed to deal with some

cases. From the point of view of a generativist, viewing a scientific ‘theory’ as one whole,

and attempting to find out how such a thing could have been discovered makes it a very

complicated problem. A generativist’s strategy, we think, has to be, to start from the units

and proceed to the whole—to understand how the whole can be constructed out of the units.

Therefore, most examples of reconstruction of bits of scientific knowledge that we

shall elaborate below will be local case studies of a given field of science. This approach,

we shall argue, will be more promising than attempting to understand the discoverability

of mega-structures as one piece. We now offer some clarification regarding the notion of

‘scientific assertion’.

A scientific assertion, in simple terms, is a statement relating a model—a type—

with a physical system—a token. For example, in “Earth-Sun system is a two-body model (of

Newton’s theory)” the system and the model take the places of the subject and the predicate

positions of a statement. The term ‘Model’ can be called a predicate (more precisely a

complex predicate) because it describes a class of physical systems, all of which can be called

the tokens of the model. Therefore, another way of defining a scientific assertion is that it is

a statement where the subject is a physical system and the predicate is a model. A similar

16In the first part of his book Laws and Symmetries this thesis is argued in great detail. Though relevant
to the matters we are discussing we shall not enter into that involved debate here.
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characterization is also possible for meta-scientific statements, with a minor qualification (to

be elaborated below). A scientific assertion differs from ordinary (commonsense) assertions in

a special sense that over and above the type-token relation, scientific predicates and subjects

also have a structural or morphic relation between them. This enables us to say that to have

a scientific knowledge of “some thing” is to have a physical system that incorporates the

phenomena which is described by an assertion employing a model. Nothing can be called

scientific if the description is not structure dependent, i.e., indirect. This is our general

criterion of demarcation.

Since both systems and models are constructions by the scientist, one might say,

they say nothing about the real world. There is a partial truth in this, because while a model

is constructed by employing mathematical methods and not by empirical means, physical

systems are idealizations of phenomena. However, the possibility that some of the physical

systems can be really actualized in the experimental world, if not in the ‘open’ world, provides

sufficient reason for our belief in the applicability of the model to describe and explain the

world around. Though due to the employment of mathematical techniques scientists can

obtain models that may not have any known applications, the models obtained will have

certain epistemic value because of their ability to tell us under what conditions an application

of such a model could be found. A number of examples in modern physics can be cited,

specially in particle physics, where scientists have devised a mathematical model prior to any

empirical confirmation. The predictions that are based on such models were experimentally

realized much later.

The question however remains, can there be any method or logic for generating or

constructing models and systems? Since models and systems are different, and since both

of them are constructions, the question to be addressed by a generativist must be able to

meet both the requirements, either separately or together. In fact this is a consequence

of any generativist who wish to adopt the semantic approach to scientific knowledge. We

need methods of generating or creating both scientific subjects and scientific predicates of

scientific knowledge. We claim that inversion has a very crucial role to play in both kinds of

constructions envisaged.

The distinctive nature of the questions to be addressed in the context of discovery

have been partially indicated by Suppe, who clearly distinguished between two epistemologi-

cally distinct stages in the process of theorization. One stage is the transition from phenomena

to “hard” data about the physical system, and the second stage is the transition from the

physical system to the postulates, etc., of the theory.
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The two sorts of moves are qualitatively different , the former being essentially
empirical or experimental—being in effect a “translation” from the phenomena
to an idealized description of it in the vocabulary of the theory’s formalism, and
the latter being essentially mathematical or computational in nature.17

Suppe correctly identifies the first stage as one which involves counterfactuals, while the

second stage involves mathematical computations (techniques). He further says, that the

first stage is more complex than the second. Furthermore, it is a historical fact that the

former is more difficult and more time consuming than the latter.

The problem of the construction of models will be taken up in the next chapter,

where we will return to the issues identified here. The problem of constructing physical

systems will be taken up in greater detail in the case studies in Part-III.

Before we get into the problem proper we shall critically discuss in detail the non-

statement view of Stegmüller on the structure of scientific theories.

5.3 Stegmüller’s Nonstatement View

The nonstatement view has been developed by Sneed and Stegmüller in an attempt

to give a methodological character to Kuhn’s insightful thesis. They developed a structural-

ist and nonstatement view of scientific theories, which has been claimed by its proponents

to provide the conceptual apparatus needed for the analysis of the dynamics and the meta-

scientific reconstruction of Kuhn’s notions of ‘normal science’ and ‘scientific revolutions’.18

Stegmüller’s project is to face the challenge posed by the irrationalist view that follows from

Kuhn’s thesis, that a theory is never rejected on the basis of falsifying instances but is eventu-

ally dislodged by another theory (§ 3.4 page 79). He thinks that the apparent irrationality of

Kuhn’s view can be erased if we understand by scientific theory not a system of statements,

but “a relatively complicated conceptual instrument”, which he terms as the nonstatement

view .19 Stegmüller’s reaction to Kuhn’s thesis has a remarkable feature. Though Kuhn’s

thesis has a negative impact on the traditional cumulative logicist view of science, Stegmüller

thinks that it has a constructive/positive thesis. It is to this constructive thesis of Kuhn,

Stegmüller refers to by the term ‘metascientific reconstruction’.

There are two sources where irrational behavior can be ascribed to scientists in

the Kuhnian account. First, during the period of normal science, scientists never examine

their presuppositions nor their conceptual apparatus critically even if recalcitrant ‘data’ are

17Suppe 1972, op.cit. pp. 15-16.
18Stegmüller 1976, op.cit. p. vii.
19Ibid.
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found. Second, during the revolutionary phase one theory is dislodged by another not by

comparative evaluation but by a competitive struggle between theories.20 Thus, neither

during the period of normal science nor during the revolutionary period is falsification or

verification of theories coming from observations of nature/experiment. The two theories

competing at the revolutionary period are not logically compatible with each other, for they

are incommensurable.21 The new theory contains nothing of the old, therefore no rational

arguments can work in this context. These are briefly the sources of irrationality in Kuhn’s

The Structure of Scientific Revolutions.

Kuhn’s thesis undoubtedly provides a setback to metascientific analysis or any logic

of scientific discovery. If Kuhn is correct, these terms must be vacated in favor of psychology,

sociology and history of science.22

Stegmüller’s proposal can be described as a reconciliatory attempt by ‘imbuing

rationality’ to Kuhn’s conception of science

by disposing of the apparent contradictions between the facts that a person (or
group of persons) holds a certain theory and nevertheless constantly changes his
(their) opinion respecting this theory.

He proposes a nonstatement view of scientific theories based on an informal reconstruction of

a theory by introducing a set-theoretic predicate. A scientific assertion or claim, according to

this view, is of the form “c is an S” where c is a name or a definite description of a concrete

situation, and S is the structure of the theory.23 For example, “x is a classical particle

mechanics” is a set-theoretic predicate capturing the structure S of a theory.24

Stegmüller reconstructs a mature theory such as classical particle mechanics, as

a concept, or a structure S. The structure S is defined in terms of domains, functions

(both theoretical and non-theoretical) and axioms.25 The functions (both theoretical and

non-theoretical) will be replaced by constant values from the given domain to obtain an

application of a theory.

A function is theoretical iff the concrete measurement of the function depends on the

theory for every application of the term, otherwise, i.e., if its measurement does not depend

on the theory, it is non-theoretical.26 It is a noteworthy proposal because no explication of

observability etc., are involved in this dichotomy. A function is said to be T-theoretical or
20Kuhn 1970, The Structure of Scientific Revolutions p. 77.
21Kuhn, ibid p. 101.
22Cf. Stegmüller op.cit. p. 161.
23Stegmüller op.cit. p. 38.
24Cf. Ibid , Chapter-6.
25Ibid p. 96.
26Ibid p. 45
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not, in relation to the theory concerned. Therefore this distinction is not absolute.27 For

example, the concept ‘pressure’ could be a theoretical concept with respect to classical particle

mechanics, while it is non-theoretical with respect to thermodynamics.28 This relativistic,

but objective, approach helps Stegmüller to say ‘farewell’ to the observational language.29

The structure S consists of ‘levels’ of models, such as models Ms, possible models

Mps, and partial possible models Mpps. Models of a theory are entities (structures) where a

theory is satisfied. The distinction between the various models is that the model M is mathe-

matical, the possible model Mp is obtained fromM by eliminating the axioms, and the partial

possible model Mpp is obtained by eliminating from M both axioms and also theoretical func-

tions. The extensional elements of partial possible models are assumed to be out there in the

world, where every theoretical component is assumed to be eliminated. Stegmüller makes use

of the initial suggestions of Ramsey and Sneed in this process of eliminating theoreticity.30

One clear distinction we find between the semantic view as presented in the above section

and Stegmüller’s view is that on the latter’s view the elements of partial possible models

(physical systems) are considered to be completely devoid of theoretical content, while ac-

cording to the former view physical systems are also theory impregnated. Here, we think

Stegmüller continues to be influenced and seems to be convinced by the positivist’s program

of eliminating theoreticity for the purposes of reconstructing and interpreting theories.

The relationship between the various levels of models in the structure S can be best

understood by saying that the factual-content is highest in partial possible models, lowest in

models and intermediary in possible models. We can say that the theoretical and abstract

component of models gets successively reduced from M to Mpp, and the factual content,

which can be defined as the inverse of theoretical content, gets successively increased from M

to Mpp. Thus in this structure S, we can say in most general terms that form and content are

inversely related. Though this is our interpretation of Stegmüller’s definition of structure, we

think that Stegmüller would agree with this general formulation. This general formulation,

we think, not only gives a pattern to what is proposed by Stegmüller, but is also simple

enough for the understanding the proposal of the semantics of scientific theory.

The structure S is neither true nor false, for it is not an assertion but a conception.

When we apply a structure to a concrete situation by making the assertion “c is an S”, we

obtain a statement which can be either falsified or verified, for only statements are true or

27Cf. § 3.1 pp. 40ff.
28Ibid pp. 46-67.
29Ibid p. 50.
30Sneed, J.D. 1971, The Logical Structure of Mathematical Physics, Ramsey F. P. 1931, The Foundations

of Mathematics and Other Logical Essays.
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false.

A theory is not the sort of entity of which it can sensibly be said that it has been
falsified (or verified).31

It is important to keep in mind that “c is a S” should be understood as a single undivided

statement. The ‘anatomy’ of the structure S should not lead one to the misunderstanding

of Stegmüller’s proposal due to the statemental nature of metacharacterization, which is

unavoidable. It is also important to bear in mind that all this is a description of semantic

objects and not syntactic objects.

Stegmüller further defines other structures such as core K. The structure S of a

theory becomes the core K of that theory with the introduction of (a) a function r that

effects the differentiation between Mp and Mpp
32 and (b) a constraint C on Mp to the three

models, M , Mp and Mpp. The core K of a theory can be expanded by further introduction of

(a) a set of laws L relating the elements of the core K, (b) a constraint CL on the theoretical

functions of the laws that restrict the theory in its various applications and (c) an application

relation α between the set of laws L and the set of intended applications I.33

The relation α is a many-many relation, whose domain must be a subset of partial

possible models Mpp and whose range comprises of a set of laws L. The relation α restricts

absurd applications of laws by guaranteeing that the law actually holds.

A theory, then, consists of a core K, and a set of intended applications I. The I

consists of physical systems or Mpp.
34

A set of physical systems never have as their domain, mere individuals.35 It must

include objects which are described in a certain way, i.e., the objects in a physical system

must be related according to certain non-theoretical functions.36 In other words, the physical

systems are extensional structures, vis a vis., a theory which is an intensional (conceptual)

structure.

By the introduction of two more additional conditions in the definition of a theory

we get a complete formulation. One of them is that there should be cross linkages between

various applications of a theory (as specified by (5) below), and the other is that the various

31Ibid, p. 19.
32Ibid p. 109.
33Ibid, p. 115.
34Feyerabend suggests that “T-facts” would be a better term than ‘physical systems’ to bring out the point

that T-facts are relative to theories. This he suggests would be in consonance with Stegmüller’s relativized
dichotomy of T-theoretical and T-nontheoretical. Feyerabend 1977, ‘Changing Patterns of Reconstruction’
British Journal for the Philosophy of Science Volume 28, p. 353n.

35Stegmüller op.cit. p. 163.
36Ibid.



136 Chapter 5. Nature and Structure of Scientific Knowledge

applications be homogeneous. Putting everything together the definition of a scientific theory

is as follows:

X is a scientific theory only if there exists a K and an I such that

(1) X =< K, I > ;

(2) K =< Mp ,Mpp r,M,C > is a core for a theory;

(3) I ⊆ Mpp ;

(4) each element of I is a physical system;

(5) if D is a class containing exactly the individual domains of the elements of I,
then for any two elements Di and Dj of D, Di is linked with Dj ;

(6) I is a homogeneous set of physical systems.37

Stegmüller comments that the conditions (4) and (6) might involve pragmatic elements.38

Given this reconstruction of what a scientific theory is, it is now possible for

Stegmüller to tackle the irrationality problem, mentioned above, resulting from Kuhn’s thesis.

A theory, according to Stegmüller, can have a series of expansions E1 at t1, E2 at

t2 ... , but the core of a theory and the set of intended applications remain constant. Here is

a possible identifying criteria of a scientific theory. The same theory can be used “at various

times to assert different central empirical claims.”39 It is also possible to reconcile Popper’s

falsificationism and Kuhn’s conception of science, because a scientist can continue to believe

in Ei, one of the extended applications, and not believe at the same time Ei+1, on the grounds

that it is not part of the set of intended applications I. Therefore continued belief on the

part of the scientist despite recalcitrant evidence is in no way irrational.40

The set of intended applications does not constitute a fixed domain, and it is given

intensionally via a set of paradigmatic examples which satisfy only Wittgensteinian family

resemblance.41 In the event that a theory fails completely with regard to one specific ‘ap-

plication’, that can be removed from I, without affecting the rest. The set I of intended

applications determines what Kuhn calls paradigmatic examples, which in turn determine a

paradigm.

The nature of change that takes place during revolutions is from one core to another.

With regard to the incommensurability of rival theories, in the context of revolutionary

37Cf. ibid p. 165.
38We shall discuss the problem of deciding about the sufficient conditions for physical systems in greater

detail below, because we claim that inversion plays a decisive role in delimiting a physical system. The problem
of deciding homogeneous systems would not exist in the framework that we are adopting, for we think it is an
artificial problem.

39Ibid, p. 168.
40Ibid .
41Cf. § 13.2, pp. 173–177.
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science, two different theories will have different cores that have no logical relations possible.

Thus, Stegmüller says, incommensurability is a trivial consequence of the nonstatement view

of theories. We shall critically discuss his proposals in the next section.

5.4 Critical Appraisal of Nonstatement View

Stegmüller’s work received mixed response from both Kuhn and Feyerabend. Kuhn

welcomed Sneed’s formalism commenting that even an elementary structural form of Sneed

captures significant features of scientific theory and practice notably absent from the earlier

formalisms.42 He further comments that

if only simpler and more palatable ways of representing the essentials of Sneed’s
position can be found, philosophers, practitioners, and historians of science
may, for the first time in years, find fruitful channels for interdisciplinary
communications.43

We will return to Kuhn’s critical comments after considering Feyerabend’s, Pearce’s and van

Fraassen’s.

Feyerabend argues that both the claims of Stegmüller (1) that Kuhn’s thesis would

cease to have irrational consequences if we adapt the nonstatement view by rejecting the

statement view, and (2) that nonstatement view no longer has problems with theoretical

terms, incommensurability of rival paradigms etc., can be defused by showing that

(A) that the features rationalized by Stegmueller occur in Kuhn but not in science
and/or (B) that these features can also be explained by the statement view.44

Scientific theories as reconstructed by Stegmüller, Feyerabend says, are not immune to re-

moval by facts but only immune to certain types of removal such as refutation.45 Therefore,

the difference between the statement view and the nonstatement view “lies in the circum-

stances that bring about the demise of a theory.” The statement view methodologies, such

as the Lakatosian methodology of research programs, have already shown how immunity of

a theory can be accounted for rationally.46

Feyerabend refers to certain episodes in science which can be better explained by

the statement view. For example:
42Kuhn ‘Theory-Change as Structure-Change: Commenting on the Sneed Formalism’ in Butts, R.E. and

Hintikka J. 1977, Historical and Philosophical Dimensions of Logic, Methodology and Philosophy of Science,
p. 290. Since Stegmüller adopts Sneed’s formalism, Kuhn’s comments on the latter apply also to the former.

43Ibid, p. 291.
44Feyerabend 1977, ‘Changing Patterns of Reconstruction’ British Journal for the Philosophy of Science 28

p. 359.
45Ibid.
46Ibid p. 360.
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The early quantum theory can be regarded as a paradigm (and was regarded as a
research program by Lakatos) but there is no fixed underlying structure, no core
in the sense of Sneed and Stegmueller, very fundamental assumptions such as
the law of conservation of energy and momentum may be dropped and picked up
again, and this is not just in special domains, as would be the case with special
laws and expansions, but where ever the paradigm is applied. Moreover, this
feature can be found not only in this particular period of the history of science
which was rather unruly but in more settled periods as well.47

A statement view, such as Lakatos, can deal with cases like these, because Lakatos’s core is a

loose cluster of statements and is not as rigidly defined as the core, which permits an exchange

of statements in such a manner that without change of paradigm the member statements in

a cluster of statements can change. Therefore certain historical episodes of science can be

better understood by the statement view. This is over and above the statement view’s ability

to handle other features of Kuhn’s thesis, which both the statement view and nonstatement

view can handle. Effectively, therefore, the statement view is better placed. Also, in the

‘context of application’ very rarely do scientists employ the entire structure of a theory.48

But, then there are advantages in the Sneed-Stegmüller reconstruction, which “puts

into relief certain features of science that almost disappear in the statement view.” They are:

One minor example which is not mentioned by Stegmueller is the role of diagrams
and models: chemical formulae are compared and combined according to strict
rules but it would be somewhat artificial to regard them as statements. Of course,
they can be used to produce statements, but they are not statements themselves
and transformations leading from one formula to another do not go through a
statement phase. An even more important example is the role of a priori ele-
ments in our knowledge. Categories, forms of perceptions, are structures which
again give rise to statements (Kant’s synthetic a priori statements) without being
statements themselves.49

From these critical observations of Feyerabend one very important point emerges, which we

further wish to exploit in the present thesis. The point can be put as follows: There exists

a territory (the territory roughly demarcated by Feyerabend in the above quotation) that

the nonstatement view alone can access. There are certain territories, specially those in

the context of application, where the statement view has better access. And, insofar as the

‘middle’ territory, that part which both the views can handle well, is concerned, it would

remain unproblematic for methodological reconstructions. Stegmüller, so far has not shown

how the nonstatement view would work in that territory where it alone has access. All his

47Ibid p. 361.
48Ibid p. 361.
49Ibid p. 359.
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attempts are focussed in explicating the constructions of a finished scientific theory, and its

applications, where the statement view also has a better hold. Therefore, we think that

the strong point of nonstatement view remains undemonstrated. He seems to be working in

a context that does not belong to a defender of the nonstatement view. We shall further

strengthen this observation as we go through the critical comments of Thomas Kuhn.

David Pearce argues that the debate between the statement and nonstatement view

is not substantive, i.e., an issue over which one can be judged better than the other. He

thinks that

the force of Stegmüller’s advocacy of the nonstatement view would be dissipated
were it to turn out that the two positions are after all only equivalent ways of
saying the same thing—what you can do with linguistic concepts you can also do
with structures, and conversely.50

Though, the structuralist approach based on Suppes’ notion of informal set-theoretic predi-

cate is able to treat the structure and dynamics of real scientific theories, Montague’s rigorous

formal axiomatizations of scientific theories “may be considered both philosophically valu-

able and a practically useful tool within the formal language approach to the programme of

reconstruction”.51 Further, he says that:

Since a scientific theory is customarily written down , e.g. its empirical laws are
expressed by sentences of a language, considerable amount of technical dexterity
is required to paraphrase away its linguistic features in order to represent it in
set-theoretic form.52

Pearce’s attempt on the whole has been to show that the point of set-theoretic structural-

ist/nonstatement approaches depends on the linguistic basis of science.53 Thus Stegmüller’s

view does not address anything more in principle to the formal statement based model-

theoretic reconstructions of scientific theories. In fact, Stegmüller also says that the Montague

line of reconstruction of a scientific theory is in principle possible, though, he says, that we

need super-super Montagues to achieve the task. These observations suggest that except for

the factor of degree of difficulty there seems to be not much difference between the two views

with respect to reconstruction of a finished scientific theory. We take encouragement from

this situation to further strengthen our earlier conclusion that Stegmüller is trying to prove

his mettle in a wrong context, the context of reconstructing a mature scientific theory and

50David Pearce 1981, ‘Is there any theoretical justification for a nonstatement view of theories?’ Synthese
46, p. 2.

51Ibid pp. 3-8.
52Ibid p. 7.
53Ibid p. 34
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the context of application. We think that the context where a nonstatement view would fare

well is the context of theory formation and not after a mature theory has been formulated.

Is it possible to define a set-theoretic predicate before a theory is historically de-

veloped as a finished product? No, because it is reconstruction, it is post-hoc. However, is

there any epistemological gain in the exercise? Yes, there seems to be some, because Kuhn’s

observations about scientific revolutions appear more rational. But, what if Kuhn is proved

wrong? Stegmüller seems to be presuming the truthfulness of Kuhn’s observations, which can

be challenged. What is the worth of the nonstatement view independent of Kuhn’s thesis?

Since the anatomy of a theory is rather clearly stated, it would have a role to

play in deciding whether something is a scientific theory or not. But again, Stegmüller’s

reconstruction is possible only for mathematically matured fields of inquiry such as physics.

Is it necessary that only physics be considered the proper way of doing science?

Is there any implicit method that would generate the elements in the set of intended

applications? If that were possible, then the reconstruction can suggest a logic of discovery.

But no such role of the nonstatement view is suggested. Besides, if the identification (dis-

covery) of a physical system is theory or structure dependent, i.e., T -theoretical, pure a

posteriori identification of it would be impossible. It follows from Stegmüller’s account that

any problem of application of a theory can be said to be solved only after the successful

incorporation of a physical system under a theory is achieved. Therefore, Stegmüller’s recon-

struction would help only in reinterpreting an application after the problem of application or

in other words the problem of discovery is actually solved. Once the problem of discovery is

solved, all the relevant epistemic factors, whatever they are, would already have entered and

done their job. If the above observations are correct, then there seems to be no special and

substantial epistemic role for the nonstatement view, apart from providing a semantics for a

finished theory. Where lies the significance of the nonstatement view? The places identified

by Stegmüller do not appear to be satisfactory. Kuhn thinks of certain possibilities which

we shall discuss below after presenting van Fraassen’s critical comments on the nonstatement

view.

While reflecting on the question of what sort of a thing a scientific theory is, van

Fraassen tells us why he disagrees with the proponents of the nonstatement view. He defends

a view that a scientific theory must be the sort of thing that we can accept or reject and

believe or disbelieve.54 Commenting on the view of Stegmüller that a theory is not the sort

of thing which can properly be said to be true or false, he says:

54Bas van Fraassen 1989, Laws and Symmetry, p. 190.



5.4. Critical Appraisal of Nonstatement View 141

This looks like a high price to pay. Don’t we believe, assert, deny, doubt, and
disagree about theories? And do such propositional attitudes not presuppose at
least that a theory is the sort of thing which can be true or false?

A theory is undoubtedly an object for epistemic evaluation. For van Fraassen it becomes

all the more important because theories can be appraised on the basis of certain a priori

qualities such as symmetry. (We will discuss separately the relation between symmetry and

scientific knowledge below.) But it is not impossible for a defender of the nonstatement view

to incorporate such features. It is also possible to reinterpret such “propositional attitudes”.

A defender of the nonstatement view, for example, could reinterpret (and van Fraassen him-

self sees this possibility) belief in a theory as a belief that the theory possesses a certain

relation to empirical reality, say by having relations to a set of applications.55 Similarly other

propositional modes mentioned above can be reinterpreted.

Is it not possible to provide epistemological appraisal of concepts? Say as mean-

ingful or not, as empirically relevant or not, as acceptable or not, as successful or not. The

nonstatement view is not claiming anything other than saying that a scientific theory be un-

derstood as a complex concept (or predicate). We do make choices between concepts, just as

van Fraassen chooses ‘acceptability’ rather than ‘truth’ as a better expression in certain con-

texts. Just as all instruments are not good for hunting, not all concepts are good for ‘hunting’

truth. Since it is possible to rate or value concepts as being useful or not, depending on the

context, it is indeed possible for a nonstatement view to meet van Fraassen’s objection.

Further, is it not possible to introduce a dichotomy between scientific and non-

scientific concepts? If it is possible it would become another level of epistemic evaluation

of concepts (theories). We are aware of purely empirical and positivistic suggestions, such

as cognitive significance based on verification, proposed by positivists and falsification, pro-

posed by Popper. We think that along with empirical evaluation another complementary

non-empirical (logical) evaluation would make such a dichotomy possible. Symmetry, van

Fraassen’s favorite, is certainly one of the possible candidates for achieving such an objec-

tive. The necessary relation between symmetry and inversion would make this new line of

epistemic evaluation all the more interesting. More about this later (page 6.9).

Since theories are viewed as structures by both Stegmüller and van Fraassen and

since symmetry is a property of structures, we do not see why their positions cannot meet on

the issue of the structure of scientific theories. We think that their meeting would have the

effect of mutual reinforcement, and no one is required to pay any high price. There seems to

be little or no room for differences between the structuralists and the constructive empiricists.
55Ibid, pp. 190-191.
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Another cause of trouble in the nonstatement view, according to van Fraassen, is

regarding the capacity of scientific theories to say what the world is like. Scientific theories

are indeed about the world, otherwise they can’t be considered scientific. They are not just

about the observable aspects, but also about the inaccessible and unobservable aspects. But

at the same time the function (or the power) of science is not just to describe and explain our

experienced world, but also to describe and explain other possible worlds. Thus van Fraassen

says:

What does the theory say the world is like? and What does the theory say the
phenomena are like? Since the phenomena are just the observable part of the
world, and since it is logically contingent whether or not there are other parts, it
follows that these questions are not the same. Indeed, the second question is part
of the first, in the sense that a complete answer to the latter is a partial answer
to the former. The ‘non-statement view’ appears to deny the intelligibility of the
bigger question—but the question seems intelligible.56

The distinction between ‘the world’ and ‘the phenomena’ is inevitable, specially with re-

gard to scientific knowledge, which cannot restrict its access to the world of phenomena

alone. It is not clear, however, why he thinks that the nonstatement view denies or should

deny the intelligibility of the bigger question. The set of intended applications, according

to the nonstatement view, need not be equivalent to the set of observable phenomena alone.

Besides the nonstatement view also speaks of physical systems as members of the class of

applications, and not mere phenomena. This is also the point of the semantic approach van

Fraassen defends.57 Therefore, we think that van Fraassen’s objections are as unreasonable

as Stegmüller’s belief that the semantic approach is a statement view. The only notable

distinction between the semantic view and the nonstatement view is in the latter’s notion of

possible models Mp, (which is also the opinion of Kuhn) and therefore we should reconsider

the latter as an enrichment of the semantic approach rather than as a radical departure. The

worthiness of the nonstatement view, let us repeat, consists in contexts other than those of

reconstruction of finished theories, such as the reconstruction of theory formation. For the

purposes of reconstructing finished theories the semantic approach is as good as the nonstate-

ment view or any other statement views, whether the informal type of Lakatos or the formal

variety of Montague. Since van Fraassen and other defenders of the semantic approach also

believe that the nature of scientific knowledge consists in establishing the relation between

the models on one hand with the physical systems on the other, whatever differences still

56Ibid, p. 191.
57Cf. ibid, p. 222, and also Giere 1979, Understanding Scientific Reasoning, and Suppe 1977, The Structure

of Scientific Theories.
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persist between them would not be of a substantial kind. They should therefore realize that

there are more affinities than differences and if they come together it would be for mutual

benefit.

Symmetry as a property of scientific construction, to be elaborated below, can with-

out trouble be incorporated by Stegmüller et al., and a conceptual view (if not the nonstate-

ment view) can be incorporated by van Fraassen et al. After all symmetry is a property of

either a structure or a relation. An assertion is asymmetrical because the predicate ‘includes’

more than just the subject mentioned by an assertion, for it is a type, while the latter is a

token. Definitions, models and systems can be interpreted as structures, all of which can

be called symmetrical. We therefore, do not see any problem, of either a formal or a sub-

stantial kind, in viewing definitions, models and systems as nonstatements. We can always

view—with appropriate interpretation—scientific assertions (call them laws or theories or

whatever) as statements. What is required, to the best of our understanding, is that van

Fraassen should and could without problem admit that definitions, models, systems etc., are

nonstatements, in the sense that they are constructions or structures. And Stegmüller should

and could without problem admit that scientific assertions, whether big or small, are indeed

statements. The resulting view obtained by the reconciliation of the semantic and the non-

statement views, would give rise to an enriched picture of scientific knowledge. Therefore, for

most purposes the semantic approach and Stegmüller’s structuralist view could come closer

than van Fraassen and Stegmüller think.

Another point requires clarification. The ‘bigger’ question mentioned above—‘What

does the theory say the world is like?’ or what van Fraassen calls “the foundational question

par excellence”: how could the world possibly be the way this theory says it is?—does not

mean ‘What does science say the world is like?’ or ‘How could the world possibly be the

way this science says it is?’58 This may sound like a trivial clarification. But seeing the

distinction between the two has significant implications. We think that science does not say,

and it cannot say, just in one piece (theory) what the entire world is like. Science does and

can only say what some of the systems of the world are like. A scientist can, with the help

of a theory, undertake to describe or explain a taxon of systems but not all systems at one

go. We define a ‘taxon’ as a class of homogeneous objects or systems that are structurally

alike.59

The above claim that science approaches the world piecemeal cannot be proven ac-

ceptable unless we prove the following proposition untenable: All systems cannot be assumed

58van Fraassen op.cit., p. 193.
59Cf. Rom Harrè 1970, The Principles of Scientific Thinking,
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to be homogeneous or compatible to one mega-system. The only possible reducibility is at

the formal level, therefore devoid of content. Different theories relate to different sets of sys-

tems, or in Dudley Shapere’s language, different scientific theories have different domains.60

Reducibility without loss of content is a myth, as is also generatability of all physical systems,

from one mega-structure (or mother structure), which we can relate to our phenomenal world.

Analysis and synthesis, whether at the conceptual level or at the ontological level, is the only

known technique of science, which can be realized only at a local paradigmatic level. Global

or architectonic systematization is not a feature of natural science. For natural science it is

essential, unlike metaphysics, to be paradigmatic and problem solving at a local level. Even

if one could prove formally that all theories are reducible to one, that would be at the cost of

empirical content. What is scientific knowledge without empirical content? We will return

to these questions below.

We will end this section with Kuhn’s critical comments on Sneed’s and Stegmüller’s

proposals. Kuhn’s comments are indicative of a context where a nonstatement view is worthy

of consideration. Kuhn reads significant sense in Sneed’s and Stegmüller’s proposals not

in terms of the manner in which they have been presented but by inverting the order of

presentation.

Sneed and Stegmüller start reconstruction by selecting an established theory such

as classical mechanics, presupposing the criteria for identifying a theory. Then by exam-

ining the theoretical and non-theoretical functions which are distinguished on the basis of

the conditions specified above (133), they introduce constraints for obtaining the specifica-

tion of theoretical functions. Kuhn remarks in this regard that the novelty of Sneed’s (and

Stegmüller’s) approach consists in the role of constraints. He wonders about the possibility

of inverting the order of their introduction.

Could one not . . . introduce applications and constraints between them as prim-
itive notions, allowing subsequent investigations to reveal the extent to which
criteria for theory-identity and for a theoretical/non-theoretical distinction would
follow?61

In order to see how significant in fact is this possibility, let us see why Kuhn sees this

possibility.

Kuhn observes that of the three models, M , Mp, Mpp , except for the second, Mp ,

all have parallels in traditional formal treatments. Mp’s can be obtained by adding theoret-
60Dudley Shapere ‘Scientific Theories and their Domains’ in Suppe 1977, op.cit., pp. 518ff. More on domains,

and reducibility below.
61T.S. Kuhn 1977, “Theory-change as Structure-change Comments on the Sneed Formalism” in Butts and

Hintikka 1977, p. 295.
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ical functions to Mpp’s. Another way of saying is that Mpp’s can be obtained by dropping

theoretical functions from Mp’s. We can describe the latter as top-down transformations

and the former as bottom-up transformations. Stegmüller’s presentation follows the order of

top-down transformation. We will see below that these transformations are really invertible.

This is possibly what Kuhn has in mind. For he observes that:

Except in the case of fully mathematized theories, neither Stegmüller nor Sneed
have much to say about how Mpp’s are, in fact, extended to Mp’s.

That is, they have little to contribute in the order of bottom-up transformation.

The bottom-up transformation (from Mpp to Mp) is very relevant for reconstructing

theory formation, if not for reconstructing a well formed theory. Since, a method of generation

consists in solving the problem of reconstructing theory formation, the possibility of inverting

the order presented by Sneed and Stegmüller is crucial for the problem at hand. Kuhn makes

the following three assertions, which we think are supportive of our view:

First, teaching a student to make the transition from partial potential models to
partial models is a large part of what scientific, or at least physics education is
about. That is what student laboratories and the problems at the ends of chap-
ters of textbooks are for. The familiar student who can solve problems which are
stated in equations but cannot produce equations for problems exhibited in labo-
ratory or stated in words has not begun to acquire this essential talent. Second,
almost a corollary, the creative imagination required to find an Mp corresponding
to a non-standard Mpp (say a vibrating membrane or string before these were nor-
mal applications of Newtonian mechanics) is among the criteria by which great
scientists may sometimes be distinguished from mediocre. Third, failure to pay
attention to the manner in which this task is done has for years disguised the
nature of the problem presented by the meaning of theoretical terms.62

Kuhn further says in a footnote, which appears at the end of second assertion, that tradi-

tional reconstruction does not have a step from Mpp to Mp. The importance of Sneed and

Stegmüller’s work is that it at least shows how in a fully mathematized theory Mpps can be

extended to Mps.

These observations of Kuhn show the direction toward which a generativist should

work. The patterns of learning and the patterns of discovery have many features in common.

If it is necessary to learn geometry before statics, it is also necessary to discover geometry

before statics.63 The necessity of introducing certain concepts while learning, before certain
62Ibid, p. 291, italics ours.
63Kuhn’ observations in this regard are as follows: “Textbooks of advanced mechanics lead plausibility to

that identification of the theory, but both history and elementary pedagogy suggest that statics might instead
be considered a separate theory, the acquisition of which is prerequisite to that of dynamics, just as the
acquisition of geometry is prerequisite to that of statics.” (Ibid p. 296.)
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other concepts, indicate to us the mutual dependency of logic and semantics. We think that

it is possible to demonstrate that the original course of discovery of an idea gets reenacted

in everyone’s mind, though no one-to-one mapping of the events is possible.64 This lack of

complete matching is not a problem because what we are seeking is a mapping in terms of

form and not content.

We are reminded of an analogous situation in the case of organic evolution, often

stated as the biogenetic law: ontogeny recapitulates phylogeny . For example, the stages of

embryonic development of higher vertebrates have a relationship analogous to the phyloge-

netic development as envisaged by the general theories of organic evolution. In this process,

no real bodies of hydra, worm, fish, or frog can be seen developing. What we do see, however,

is a structural transformation from simpler forms to more complex forms, passing through

the essential stages. Thus, the path to discovery and the path suggested for learning can be

looked at as being isomorphic despite difference in the time scale.

One important difference, however, between the context of learning and the context

of generation should be indicated. Learning is more often a guided process by already learned

people, whether teachers or whoever, whereas original discovery always has an element of per-

sonal guidance , which is what we often call, creative genius. If scientists are distinguishable

from the mediocre, as Kuhn is suggesting in the above passage, on the basis of their ability

to move from Mpps to Mps, the steps involved in this phase are undoubtedly relevant for

unraveling the problem of the generation of scientific knowledge. The latter can better be

described as the manufacturing of scientific knowledge. One might say that originality of

initial discovery is because of the unaided character of the process. Though it is true that the

original discoverer does not get any aid from recognizable sources, completely dismissing the

role of any aid would necessarily lead to mysticism about the process of discovery. Therefore,

we tend to call the nature of guidance involved in original discovery a ‘personal guidance’ to

indicate that there exists an inward source of a guide or teacher within every genius. The best

pedagogical methods, therefore, are also those which make an individual more independent.

It is the role of method, whether professed by the renaissance humanists or by the ancient

Greeks—to create independent individuals.65

64The context of learning is most often not as interesting as the context of discovery. This is possibly because
the latter context is never reenacted fully or even partially in the former context, which makes learning very
dull. Good generative reconstructions of ideas, we think, would prove to be of great use in science education.

65We should however note the irony implicit in this humanist spirit. In actual fact what we have seen
is that most scientific knowledge has been employed to make most of humankind more dependent on the
mega-systems civilization has created, rather than in the direction of liberating the individual from the misery
external systems impose on being. On the one hand science seems to be based necessarily on institutions, but
on the other hand it has this professed objective of human freedom. We are not heading to resolve, reconcile
or even expose these ironies or contradictions any further in this thesis, for that would be more in the direction
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In this thesis we are trying to make room for a methodological study of the inverted

order which we have indicated above. The set of partial models as stated above, consists of

physical systems. Observing physical systems such as those analogous to balances, floating

bodies, pendulums, etc., is not a trivial matter. In fact, it is in itself an insightful discovery,

often half solving the problem. We therefore suggest that in the formation of scientific

knowledge we need to consider another step, which is from phenomena or from facts to T-

facts (following Feyerabend’s suggestion) to physical systems. We agree with Kuhn that

creative imagination is also needed in the step from Mpp to Mp , and incorporating a non-

standard Mpp to an Mp . However, we think that to visualize unorganized phenomena in

terms of organized phenomena or physical systems also requires creative imagination. The

case studies presented below demonstrate this point more fully. Further, most revolutionary

developments in science are due to the accomplishment of this step. While Kuhn is correct in

saying that puzzle solving in the normal science phase consists in the step Mpp to Mp , in the

revolutionary phase that eventually results in a new conceptual scheme, the step involved is

from (unorganized) phenomena to physical systems.

Commenting on the condition (4) in the above definition of a theory given on

page 136 above, Stegmüller says:

Which conditions are sufficient to qualify something as a physical system is as
yet an unresolved problem. . . . For the time being a scientist must rely on his
intuition and experience in deciding what a physical system is.66

We are heading toward proposing a solution to this problem in the next chapter. Here we

would like to make a few more observations.

In the context of the generation of physical systems, two kinds of problems can

be distinguished. First, what is the sufficient condition to know that some x is a physical

system? Second, what is the sufficient condition to know that some x is a member of a class

of Mpp, which is equivalent to the set of intended applications I of a scientific theory? The

second problem is different from the first because not all physical systems are members of a

single theory. Different scientific theories have different domains of applications, i.e., different

physical systems, though some amount of overlapping is often found. We think that most

of the anomalies of a theory get resolved ultimately when proper incorporation of a set of

physical systems into another theory (often a new theory) is achieved. Since it is the set of

applications that determine the identity of a scientific theory, a proper methodological answer

of a critique of scientific rationality. We think that it is one thing to say what scientific method is, and quite
another thing to assess whether science as a social phenomenon has actually achieved its professed objective.

66Stegmüller op.cit. p. 163-164.
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to this problem, if possible, is desirable.

The first problem continues to have relevance throughout the course of science. The

problem of delimiting a physical system, both in the experimental context and the theoretical

context, is a serious problem that scientists face regularly. In most cases realizing a physical

system amounts to obtaining a closure. We will see below, in the case studies, how inversion

plays a very decisive role in solving this problem.

A few more significant questions that are vital in understanding both the struc-

ture of scientific theories and particularly inter-theory relations, such as reducibility, may be

stated in this context. Can a physical system be incorporated in more than one scientific

theory? Can we have two different theories with a common set of physical systems as their

intended applications? These questions are related to the question: Can one and the same

‘fact’ be explained by more than one theory? The questions are generally answered affirma-

tively by many philosophers. Though these questions appear simple, we think that the usual

affirmative answers presuppose an incorrect view of what scientific theories are. We will, with

qualification, answer in the negative to this set of interrelated questions. We have discussed

this separately in the last section (§ 5.5 page 151) of this chapter.

Regarding the dichotomy of theoretical/non-theoretical, the Sneedian suggestion is

not devoid of problems, though it looks the least problematic. Take for example, the use

of expressions such as ‘non-theoretical functions’. As already stated above, ‘non-theoretical

function’ means, in the sense of Sneed, that a function is independent of a specific theory,

and not non-theoretical in any absolute sense. Since theories are structures, can we interpret

theoretical concepts as structured concepts? We may not get into any problem by doing

so. However, we cannot interpret non-theoretical concepts as non-structured concepts. For

non-theoretical does not mean non-structured, but only as not being dependent on a specific

theory.

Therefore, when Sneed and Stegmüller are talking about the problem of eliminating

theoreticity, they are not talking about eliminating structure. Every function or concept that

is relevant for science is structured. Thus, though they appear to be proposing a definition

of theoreticity, they are actually not doing so. Unless they specify which structures can

be passed as scientific their proposal would not have much significance. For example, a

function can be called theoretical with respect to theory T1, and the same function can be

called non-theoretical with respect to theory T2. In both cases the function would be called

scientific, for both T1 and T2 are scientific theories. So the significant part of the question

remains: What makes a function scientific? or What makes a theory scientific? Which
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structures can be called scientific and which not? It is here, we think, that the weakness of

Sneed and Stegmüller’s suggestion lies. A very crucial question is left untouched. They start

with what all of us call a scientific theory, and in relation to that introduce a distinction

between theoretical and non-theoretical, without telling us the basis of selecting a body of

knowledge as a scientific theory. Therefore, though they appear to have solved the problem

of theoreticity, they have done so by neglecting an epistemological problem par excellence.

We have two proposals to make in this regard. First, we propose that ‘theoret-

ical’ and ‘non-theoretical’ be replaced by the neutral and less ambiguous terms ‘structure-

dependent’ and ‘structure-independent’ respectively. The second, is the proposal of an answer

to the question: which structures are scientific? Though the suggested alternative terms are

clumsier than the original terms, they however are clearer in conveying what is intended. The

same terminology can be used even in the context of observation, where we can start using

structure-dependent-observation, and structure-independent-observation, in place of theory-

laden and theory-free observations. The second proposal is more crucial, for it is to directly

confront the major epistemological question mentioned above. This brings us to the heart of

the matter of the thesis. We shall propose to resolve this problem in the next chapter.

Apart from the suggestion of inverting the order of reconstruction, Kuhn appreciates

Sneed’s and Stegmüller’s route to holism, while resolving the problem of circularity that one

faces in the interpretations suggested for theoretical terms.

Since, according to Sneed and Stegmüller, a theory represents a set of applications,

including a set of exemplary (paradigmatic) applications such as for example planetary mo-

tion, pendulum, free-fall, levers, balances and so on for Newton’s theory, all of which can be

connected together with the help of basic laws and the set of constraints. Each application or

a subject-group of such applications can also be reconstructed as independent theories. But

only in a connected set of all applications can the theoretical terms be interpreted without

circularity.67

If a theory, like Newtonian mechanics, had only a single application (for example,
the determination of mass ratios for two bodies connected by a spring), then the
specification of the theoretical functions it supplies would be literally circular and
the application correspondingly vacuous. But, from Sneed’s viewpoint, no single
application yet constitutes a theory, and when several applications are conjoined,
the potential circularity ceases to be vacuous because distributed by constraints
over the whole set of applications.68

67Ibid , pp. 292-293.
68Ibid , p. 293, italics ours.
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This sort of reason has given rise to holism, held by a majority of philosophers of science,

including Kuhn and Stegmüller. Kuhn, being a holist himself, is applauding the route taken

by Sneed with regard to the problem of reconstructing theories. However, we shall see that

circularity is a problem only for the reconstruction of a finished theory in the top-down order,

and not for a generativist whose order of reconstruction is in the bottom-up order. While on

the one hand Kuhn suggests that the order of transformations be inverted, on the other hand

he finds a need for a holistic interpretation of theoretical terms. This we see is unnecessary,

because the circularity problem is an outcome of a lack of a satisfactory methodological

reconstruction in the inverted order. We shall elaborate.

From a given set of problems, say of the problem of lever, floating bodies etc., if

a theory (in this case, Statics) develops, such a theory can survive independent of other

theories, like dynamics, though it cannot be independent of geometry. Such an independent

theory can be reconstructed without recourse to any theory of dynamics. And the ‘small’

set of applications get local support from the ‘small’ theory, and the theory gets support

from the applications. This circularity of mutual support looks like a logical problem only if

the transition from unstructured data to structured data—the transition from phenomena to

physical system, and from physical system to mathematical model—is not taken into account.

If this process is properly understood, then we would get independent support for the theory

without circularity.

The usual accounts of reconstruction have been trying to find noncircular interpre-

tation of theory or theoretical terms without recourse to the context of generation of the

theory, and the result was ‘net-working’ to get a holistic picture of a theory. Of course,

initially philosophers tried to understand the formation of theories through inductive reason.

Induction could not account for the ‘leaps’ involved in the process, and hence this led to the

abandonment of the generativist solution to the problem. The failure of induction is well

known, and we have dealt with it already. From the failure of the inductivist, this option

of avoiding circularity cannot be regarded as closed, because there are noninductive options.

Therefore, we think that holism is not the only way out for the problem of circularity involved

in providing semantics for theories. Another reason is that the holist option is not attractive,

because though net-working would save the logician locally from the problem of circularity,

by linking with other elements in the theory, the theory as a whole, as a single body, ‘hangs’

without proper interpretation. The problem is avoided without actually solving it.

We shall tackle the problem of circularity by a non-inductive generativist interpre-

tation of the elements of scientific knowledge, namely definitions, systems and models. And
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thus we see no necessary reason for adopting holism, insofar as the problem of circularity is

concerned. Holism, however, can be invoked in other contexts where it is found necessary.

We are saying this to make it clear that we are not against holism in principle, but we are

merely arguing against a wrong reason for holism in the present context.

5.5 Theories and Domains

We have raised some questions above: Can we have two different theories with a

common set of physical systems as their intended applications? Can one and the same ‘fact’ be

explained by more than one theory? Can a physical system be incorporated in more than one

scientific theory? Kuhn has also made few interesting observations regarding the problem of

identifying (delimiting) the body of a theory. Is it justified to include an independent theory,

such as statics, as a part of another theory, such as dynamics? Can we consider the classical

formulations of mechanics and electromagnetic theory as constituting a single theory?69

We shall begin by considering these questions with a discussion on Dudley Shapere’s

views on the matter. Shapere has made an interesting suggestion that one should take the

view that the body of scientific knowledge is more or less many independent theories with

their different domains, identifiable on the basis of “good reason”.70

If we consider a sophisticated area of science, such as physics, at a particular stage of

its development, we find that the object for investigation is broadly subdivided into different

fields, such as electricity, magnetism, light, etc. These related objects of investigation are

considered to form domains, bodies of related items.71 The formation of such domains is

not an automatic process. What are the grounds for considering the items of a domain as

being related to each other to form a unified subject-matter? An answer to this question is

not straight forward. It is indeed a necessary aspect of the question of formation or genesis

of scientific theories. The complicated nature of the issue may better be stated in Shapere’s

own words.

Although in more primitive stages of science (or, perhaps better, of what will
become a science), obvious sensory similarities or general presuppositions usually
determine whether certain items of experience will be considered as forming a
body or domain, this is less and less true as science progresses (or, one might say,
as it becomes more unambiguously scientific). As part of the growing sophisti-
cation of science, such associations of items are subjected to criticism, and often
are revised on the basis of considerations that are far from obvious and naïve.

69Ibid p. 295-296.
70Dudley Shapere 1977, “Scientific Theories and Their Domains” in Suppe (ed.) 1977, op.cit. pp. 518–570.
71Ibid p. 518.
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Differences which seemed to distinguish items from one another are concluded to
be superficial; similarities which were previously unrecognized or, if recognized,
considered superficial, become fundamental. Conversely, similarities which for-
merly served as bases for association of items come to be considered superficial,
and the items formerly associated are no longer, and form independent groupings
or come to be associated with other groups. . . . Even where the earlier or more ob-
vious associations are ultimately retained, they are retained only after criticism,
and on grounds that go beyond the mere perceptual similarities or primitive un-
critical presuppositions which formed the more obvious bases of their original
association.72

What are these items that are associated together in a domain? Are they ‘facts’ or extensional

objects, such as physical objects or systems, or intensional objects such as concepts, models

etc? Are they problems? From the examples and characterization given by Shapere it is

more likely that what he has in mind can not so easily be considered a cut and dry answer

characterizable either as extensional or as intensional. His characterization suggests that the

item is an “information” such that a domain can be talked of as the total body of information.

Each item is not a problem, because, as he says, one aspect of finding unity among the items

is a problem that affects all items.73

What are the grounds that assemble the items together into a domain? Not any rela-

tionship should count as reason. The relationship must be well grounded. One well grounded

reason, Shapere suggests, that unifies various items into a domain is the systematizability of

the items in an order, such as the taxonomic or evolutionary order.74 There can be other

kinds of orders such as functional (covariational) order that form the basis of a domain. A

theory, then, is considered an answer to the problem the domain is generally facing.

We consider that this manner of approaching the problem of understanding the

nature of scientific theories is worth pursuing. We agree in principle with the basic line of

suggestion for the generation of domains as based on some systematization of the items.

Some smaller domains may become items of a larger domain by virtue of another level of

order than can be obtained within the smaller domains. This could be related to intertheoretic

reductions that often take place. We will follow more or less this suggestion of Shapere while

working out our proposal for the generation of theories in the next chapter.

Is it not good enough to proceed toward answering the problem of identifying or

delimiting the class of physical systems that ultimately become the set of applications of a

theory? Here we are fusing the apparently similar notions—the set of applications (intended

72Ibid , p. 521.
73Ibid p. 525ff.
74Ibid p. 534ff.
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or realized) as equivalent to Shapere’s notion of domains. The answer is not yet specific

enough to ‘logicize’ the matter, but certainly far ahead of the uncertain answer Stegmüller

gave to the problem. It falls somewhere between pragmatics and a methodological solution.

Following this approach would help us put forward our thesis of relativizing both meaning

and truth. Here we shall outline the idea.

Why shouldn’t we look at different theories as different bodies that can be more

or less independently believed or disbelieved? Is it not possible to consider dynamics as a

separate theory and statics as another theory? Let us make these questions clearer by an

analogy. Take different organisms as different theories. The phylogenetically-later organisms

are dependent on the former organisms, because without the former the latter could not

possibly have come into existence. Similarly the generatively-latter theories are semantically

dependent on former theories. However, the organisms are independent bodies in the sense

that each has more or less adapted to different environments. They are different bodies

because they are structurally different. The genotype of different bodies is different, despite

their phylogenetic dependence. The survival of the organism does not depend on whether

the former organisms are extant or extinct.

Isn’t it reasonable enough to think that scientific theories are also independent bod-

ies in the sense that each has its own domain of application? Theories do show structural

difference though they are genetically dependent on former theories, just as different species

of organisms differ anatomically, though there exists a clear phylogenetic relationship with

other species. Since it is possible to believe or not believe in one theory and not others, in

a given context, the theories appear more like independent bodies with their own semantic

content. This way of looking at things appears more plausible because, despite formal reduc-

tions that are often obtained between different theories, the reduced theories never lose their

independent ‘existence’. This looks more true to the way scientists operate with theories.

Euclidean geometry, Newtonian theory, classical electromagnetic theory, etc., have all been

stated to be dislodged by more general theories. However, the facts look quite different if we

see the manner in which practicing scientists continue to employ those so called ‘dislodged’

theories even today.

The worthiness of the nonstatement view is that it allows us the possibility of holding

to Euclidian geometry at time t1, and to non-Euclidian at time t2, depending on the object

that one is studying at a given time, without involving any problem of rationality. The same

we would say for Newtonian and Einsteinian theories. Einstein and few others of his genre

might have dislodged Newtonian theory from their mind. But not the entire community of
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scientists. Scientists continue to work with Newtonian theory, Euclidian geometry, natural

numbers, integers etc., whenever they find them relevant. The gestalt shifts that take place

appear to be within the mind of some individual scientists, and not in the scientific community

at large. The dislodgement thesis is not even historically true. Which mechanical engineer

would say that he has dislodged Archimedian statics from his mind? Machines are constructed

even today by employing the same foundations.

We think that Kuhn’s account is true to what happens in the mind of a scientist,

especially the sort of geniuses like Einstein who could have gestalt experiences. There are

many scientists who can solve problems in different fields such as Newtonian physics, relativity

theory, quantum mechanics etc., and know how to switch from one conceptual scheme to

another depending on the problem at hand. Therefore we think that Kuhn’s thesis of theory

dislodgement is a psychological dislodgement and is not an entire dislodgement from the body

of scientific knowledge.

We think that it is possible to reconstruct the so called scientific theories as sev-

eral independent fields or domains of inquiries identifiable by the distinct taxon of physical

systems or the set of intended applications. Falsifications of a field of inquiry would delimit

their boundaries, and would never make them them entirely false. We have, to the best of

our understanding of the history of science, not a single field of scientific inquiry that went

into oblivion because of falsification. With regard to theories such as phlogiston chemistry

and Aristotle’s physics which have been totally abandoned, we would say that they cannot

be called scientific at all, since our criterion of demarcation of scientific knowledge is that the

field or domain of knowledge must have acquired a level of inverse systematization. Since

phlogiston chemistry and Aristotle’s physics have no such structure they have been totally

abandoned. (We have demonstrated this claim in the case studies in Part-III.) Not a single

instance can be found, to the best of our knowledge, of a theory that has acquired a level of

inverse systematization and has been shown to be abandoned completely.

It is easy to see that in this picture both meaning and truth are localized and rela-

tivized with respect to the structure and the domain of applications in which it can find value.

By relativizing the interpretation of theoretical/nontheoretical terms Sneed and Stegmüller

have already localized meaning. However, since they believed in the dislodgement of one

theory by another, except in the crisis period, we do not see the simultaneous occurrence of

competing theories.

This we think is a mistaken picture of science. Not only do several theories survive

simultaneously, due to their independent structure and domains, science cannot be accommo-
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dated in just one theory, such that that theory could dislodge the rest of the domain specific

theories. All formal unifications are at the cost of leakage of semantic content and therefore

remains a logical exercise, though it has different epistemological lessons to teach. If we wish

to be true to history and the practice of science, the correct picture of scientific knowledge

requires not only a localization of meaning but also of truth. This localization of truth cannot

be correct if the thesis of dislodgement of one theory by another is correct. Therefore, this

apparent dislodgement stands in need of explanation.



Chapter 6

Inversion

6.1 Inversion in Mathematics

The role played by inverse operators and formal (algebraic) equations in understand-

ing the extensions of the number systems is rather well understood by both mathematicians

and historians of mathematics. We will extend and generalize this understanding to all

branches of scientific knowledge. In the process of developing the thesis we elevate the idea

of inversion to a logical and methodological status. The story of the development of the

various systems of numbers, therefore, can be regarded as our first case-study of the thesis.

Presenting this in the beginning of this chapter would not only make the introduction of the

idea easier—because most of us are familiar with the development of number theory, but

this example is also useful in supplying many terms related to the idea of inversion that we

shall adopt for developing the thesis. Before we turn to the case of mathematics, a few more

comments may not be out of place here regarding the need to open up a methodological and

philosophical study on the idea of inversion.

Though mathematicians and scientists have been applying the idea of inversion and

in this sense are rather familiar with the idea, the fundamental and philosophical significance

of the idea in logic, epistemology and philosophy of science must be regarded as unexplicated .

This dissertation can be viewed as an attempt to fill this lacuna. We have worked towards

elevating the idea in order to provide for it at least as fundamental a place, (if not more),

as negation presently occupies for a logician. Since the nature of inversion, as we will see,

is necessarily constructional or synthetic—i.e., ampliative—the stated elevation of inversion

to logical status would undoubtedly alter the received view that logic is essentially analytic.

In this sense what we are going to present below should be viewed as an attempt towards
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articulating a logic of the synthesis of abstract ideas. And since scientific ‘theories’ are

constructions based on abstract ideas what we are presenting can be seen as an attempt to

throw open an idea such that more rigorous statements of a logic of scientific discovery can

be worked out in future.

We think it will not be unfair to claim that there is no precedence to a proposal of

this nature, to the best of our knowledge, at least in the history of philosophy. Prima facie

evidence of this can be that we do not normally see any entry of the term ‘inversion’ in either

the contents or the index of any common books or treatises on the methodology of science.

It may however be noted that the term ‘inversion’ is used in traditional logic, but

in a different sense. This usage is in the context of immediate inference based on the form

of categorical propositions A, E, I, and O. Two statements in this context, can be said to

be equivalent in the sense that if one is true or false, the other is also true or false. So it

is possible to transform certain statements in a valid manner to yield equivalent statements.

For example, the statement “All physicists are mathematicians.” and its inverse “Some non-

physicists are non-mathematicians” are equivalent. Here in this context the transformation

consists in changing both the subject and the predicate to their contradictories. Other simpler

transformations such as obversion and conversion are also possible.1 We will, however, be

using the term ‘inversion’, first, not as a relation between subject terms and predicate terms,

second, the terms that are inversely related are not part of a statement , but a complex

conception or structure or nonstatements (§6.4 page 172), and third, the inverses are not

equivalent expressions for conveying the same information, but are complementary.

We shall start with what is already said about inversion in connection with the

development of number theory.

Noted historian E.T. Bell writes that inversion is “one prolific method of generating

new numbers from those already accepted as understood”.2 According to Felix Kaufman

“the simplest path towards understanding the so called extensions of the number concept

lies through the operations inverse to addition, multiplication and potentiation”.3 Richard

Dedekind, one of the great mathematicians of the last century, says that the problems peculiar

to inverse operations have been the motivation for a “new creative act.”4 An appreciation of

these remarks will be easy to any one who followed the course of the development of number

theory. We shall give a brief outline of the pattern in which the development took place

1Cf. Cohen and Nagel 1936, An Introduction to Logic and Scientific Method Chapter-3, § 3, p. 57ff. Also
Carney and Sheer 1980, Fundamentals of Logic pp. 263–266.

2E.T. Bell 1945, The Development of Mathematics p. 172.
3Felix Kaufman 1978, The Infinite in Mathematics p. 91.
4Richard Dedekind 1901, Essays on the Theory of Numbers p. 4.
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in a manner that highlights the role of inversion in the process. It may be made clear that

our concern here is to see the role of inversion in the process, and hence we shall not give a

historical account, and shall concentrate only on those crucial moments where inversion enters

into the process. Therefore, the account that follows is quite a ‘compressed’ reconstruction.

Our acquaintance with numbers begins with natural numbers, 1, 2, 3, . . . . Centuries

of our engagement with numbers resulted in an increase in the knowledge of them, which

consists in discovering new operations, properties of the operations, interrelationship between

different numbers and operations etc. As a result of this the so called new kinds of numbers

were introduced into the number ‘line’.

We shall start creating new knowledge of numbers from what we already know.

Therefore, let us suppose that we know what natural numbers are and also how to increase

any given number by one unit. With this preliminary knowledge we can define an operation

called addition: starting with any natural number a we count successively one unit b times.

The definition can be formally represented by a+b = c. We can also define another operation

called multiplication: adding any natural number a to itself, b times in succession, represented

by the formula a × b = c. Using the definition of multiplication we can define yet another

operation called potentiation or raising to a power: multiply any natural number a, starting

with one, b times in succession. This operation can be represented by the formula ab = c.

In addition let us also suppose that the operations have some or all of the properties such

as associativity, distributivity, commutativity etc. Since our interest is not in developing

a rigorous axiomatic system for natural numbers, we need not bother presently about the

status of these properties, whether they are given in the axioms, or theorems, or definitions

etc.

It is however important to discuss the principles of closure that are usually specified

with respect to each operator. The above operations can be said to be closed, because the

result of any of the operations mentioned above with the set of any natural number is always

a member of the set of natural numbers. These operations do not or can not generate any

non-natural numbers. In modern algebra the very idea of an operation implies the principle

of closure: An operation on a set, S, is a rule that assigns to each element of S precisely one

element of the same set S. The operations that are closed with respect to the set of natural

numbers are generally called direct operations. We will discuss below how aptly this term

‘direct’ applies to these operations, and why these operations follow the principle of closure.

A simple answer can be that because the set S is determined on the basis of an operator.

This is to say that the closure, in the literal sense of being a delimitation, is operational.
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Contrasting this operational closure with ‘classificatory closure’ may bring out the essence

of most mathematical kinds. When we delimit class membership on the basis of a property

being common to all the members, we get a ‘classificatory closure’. All that we need here is

just the commonness of one property, and therefore ordinary classification gives no guarantee

as to the homogeneity of the members.5 However, in the case of operationally closed classes,

the members cannot but be homogeneous. We will see below that this is accountable on the

basis of a special kind of identity called invariance.

We will argue below that this operational closure is not only central to mathematics,

but also central in defining abstract objects in natural science. Though the system of natural

numbers has an end in itself, it becomes the source of new set of problems. The nature of

the source of problems is highly significant in understanding the nature of scientific change.

Though all natural numbers have a successor relation to each other, this relation

is unidirectional . All the operations that we have mentioned above are such that the result

of an operation is always greater than or equal to either of the numbers involved. That is,

given an equation a+ b = c, if a, b, and c be any natural number then c > (a ∨ b). The only

direction of ‘growth’ therefore is towards greater and greater natural numbers.

Apart from this limitation fresh problems crop up, because a few problems of very

great importance can not be answered. For example: What values of b satisfy equations

such as a + b = c, a × b = c and c = ab, given the values of a and c.? Such problems are

commonly called inverse problems, as against the solvable problems of the system, which may

be called direct problems. In order to solve these apparently solvable problems, we need to

introduce a new set of operations, commonly called inverse operations. The inverse operations

corresponding to the above direct operations are subtraction, division, root and logarithm.

However, by merely adding the inverse operations only some of the inverse problems can be

solved. The following are such problems: (a) b = c − a, where a = c, (b) b = c − a, where

a > c, (c) b = c/a, where a > c and a 6= 0, (d) b = 2
√

2 = 21/2, (e) b = log10 2, and (f)

b2 = −1. In order to distinguish this new set of inverse problems from the former set, we

shall call the former general inverse problems and the latter special inverse problems.

Solving such inverse problems has always introduced new peaks in mathematical

development. In his Essays on Number Theory Dedekind says that the performance of inverse

operations proves to be limited, while that of direct operations is always possible. He further

says:

Whatever the immediate occasion may have been, whatever comparisons or analo-
gies with experience, or intuition, may have led thereto; it is certainly true that

5Taxons, unlike classes, do contain homogeneous members.
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just this limitation in performing the indirect operations has in each case been
the real motive for a new creative act; thus negative and fractional numbers have
been created by the human mind; and the system of all rational numbers there
has been gained an instrument of infinitely greater perfection. 6

By ‘indirect operations’ he meant ‘inverse operations’. Here Dedekind is referring to the

development of rational numbers, and hence he refers only to the negative and fractional

numbers, but the same can be said about the other cases also. The limitations that he is

pointing to here are nothing but the special inverse problems with respect to subtraction and

division (problems (b) and (c) mentioned above). He is one of those mathematicians who

believed in the reality of only the natural numbers, the rest are “created by the human mind”.

Given the usual interpretation of ‘creation’ as an act of mind (mental construction), we may

say that new ‘kinds’ of numbers are ‘theoretically’ and indirectly obtained. Our knowledge

of them is indirect, in the sense that the mind’s constructive role is involved. Our knowledge

of natural numbers, on this view, are considered ‘real’ and direct.

The number systems constructed, starting from integers, have for every number

an inverse number i.e., the new number systems thus introduced necessarily contain inverse

elements. This inverse relation gives rise to bilateral symmetry of the number systems.

In such well formed systems all the fundamental operations, including inverse operations,

are always performable with any two individuals in the set S, yielding a result, which is

also an individual of the set S, with the only exception of division by zero, thus making

all possible questions well-posed and meaningful. Thus we can interpret the story of the

development of numbers as the story of inverse problems, both general and special, leading

to the corresponding enrichment of the system, where the general inverse problems needed

the introduction of new inverse operations, while the special inverse problems needed the

inclusion of new ‘kinds’ of objects into the S leading to the modification of the principle of

closure, in order that all algebraic equations can be made solvable. We will regard these two

as separate additions, though interrelated.

Our motivation in distinguishing the general and specific inverse problems requires

some explanation apart from the reasons specified above. When we approach a special inverse

problem it is possible to define an inverse operation allowing certain exceptions, i.e., by

introducing certain restrictions such that the result of the new operations still belongs to the

older set of natural numbers, thus making the special inverse problems ill-posed. Though

these restrictions might appear artificial, if we look at the actual historical development we

find that most mathematicians have initially shown tremendous reaction against accepting

6R. Dedekind 1901, op.cit. p. 4. Italics ours.
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Special Inverse Problem ‘New Entities’ New Number Systems

(a) b = c− a, where a = c Zero Positive integers
(b) b = c− a, where a > c Negatives Integers
(c) b = c/a, where a > c, and a 6= 0 Fractions Rational Numbers

(d) b = 2
√

2 = 21/2,
and Irrationals Real Numbers

b = log10 2
(e) b2 = −1 Imaginaries Complex Numbers

Figure 6.1: Inverse Problems Leading to the Construction of New Systems of Numbers

the created ‘entities’, because some of the inverse numbers like negatives and irrationals

could not be given any phenomenological interpretation.7 Most mathematicians decided

to operate with limitations rather than enter into, what they thought, a totally imaginary

and mystic world. Centuries had to pass before satisfactory interpretations were provided

by giving not only operational significance but also a geometrical interpretation to the new

numbers. Ultimately mathematicians had to make room for the new candidates because

these restrictions made the problem solving power of the operations highly limited. It is

this limitation that motivated mathematicians to ‘create’ new ‘kinds’ of numbers. Therefore,

special inverse problems, which needed for their solution the creation of new entities, bear

greater significance than the general inverse problems, specially from the point of view of

the intellectual turmoil that can be caused by the nature of scientific change in the minds of

thinking people.

Once we are in possession of a formal system that operates on a delimited set of

numbers including the inverse elements, it becomes unnecessary, from a formalist point of

view, to say that the system has two operations—direct and indirect, because the operation

is defined to operate in a set that contains inverse elements. However, from a generativist’s

point of view the problems that made the definition of inverse operations necessary are prior

to those special problems that made the creation of inverse operations necessary, i.e., general

inverse problems are prior to special inverse problems. The generative potential of inverse

operations gets masked in a formalist reconstruction, where the definition of an operation

goes hand in hand with the specification of a closure principle which delimits the set without

ever naming the elements.

The table shows which inverse problem led to the creation of which kind of number

and the corresponding new set of number systems invented.

The above sketch of the development of our knowledge of number systems is ex-

7Cf. E.T. Bell op.cit.
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tremely brief. Apart from inverse problems there are other motivations and also other justi-

fications for introducing new kinds of numbers leading to the development of new systems.

One of the most significant of them, which may be noted here without discussion, is that of

the geometrical interpretation and application of number systems. Also the much involved

discussions on finite and infinite on the one hand, and continuous and discrete on the other

are extremely vital in getting a complete picture of the development. By pointing to this we

wish to warn the reader that our sketch has been deliberately, though not deceptively, made

simple, to meet the objective of highlighting the role of inversion.

A number of questions of philosophical significance can be raised in this context.

What is the nature of the change of knowledge that took place in the development of our

knowledge of numbers? Is our knowledge of numbers moving towards ‘verisimilitude’ in the

world of numbers? Is there progress? In the course of development, did we redefine the

operations to get better and better operations or construct entirely new notions? Did we also

modify the principles of closure, to get a better operation each time or did the development

consist in the multiplication of the number of kinds of numbers, operations, etc.? Are we

moving toward greater and greater economy, because given the algebra of complex numbers

we can solve all algebraic equations? In what sense do we say that real numbers include

the naturals and rationals? Are we, after all this development, in possession of one or more

‘theories’ of numbers? Did we “falsify” the “theory” of rationals when we moved on to the

“theory” of reals? Did we dislodge one “theory” by another in the process?

These questions are deliberately formulated in a manner such that the analogy with

the usually discussed problems of philosophy of science, specially in the context of scientific

change, becomes clearer. One might at once say that the development of mathematical ideas

is one thing, and the development of natural scientific ideas is another. Some others might

say that to the extent that most of modern science is unquestionably involved in abstract

constructions, understanding in terms of a developmental model of mathematics might not

pose much problem. But, to the extent that natural science has to deal with phenomena

that are nearer to direct experience, the analogy may breakdown. However, we strongly

think that the history of natural science has sufficient evidence to suggest that the analogy is

neither superficial nor misleading. We cannot get into the problem of change of knowledge in

greater detail, for our primary concern is to demonstrate the possibility of a logic of discovery.

However, there will be occasions where we shall indicate in anticipation what our position

would be with regard to these questions.

It is necessary to make another observation regarding the nature of the number
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systems that are eventually generated. The set of natural numbers are not symmetrically

structured, while other systems of numbers, integers, rationals, reals and complex numbers

are symmetrical. The reason is obvious. The presence of inverse elements (numbers) in the

latter systems of numbers introduces this new epistemic value to their structure. In what

sense this is epistemic will become eventually clearer. Since these systems are symmetrical

they can be constructed as groups. The structural features of these abstract objects called

groups have certain properties that can be extended to other symmetrical structures that we

often find in the sciences. In the following sections, we shall be using the primitive vocabulary

of group theory. In Appendix-A properties of groups are presented.

6.2 Structure-Dependent Concepts

We have mentioned above that it is possible to talk about scientific knowledge with-

out the use of the unclear terms ‘theoretical’ and ‘nontheoretical’. Though it is possible to use

the same terminology and make the sense clearer by redefining the terms, it is always a better

approach to name them differently, for it would cause least confusion. Another reason why

we think that the term ‘theory’ makes epistemological analysis difficult is because in most

uses of the term it refers to a very large body of scientific knowledge. For reasons already

explicated we will defend here a view of scientific knowledge which is seen as a collection of a

large number of independent structures, each with its corresponding domain of application.

We therefore propose a distinction between structure-dependent and structure-independent

concepts to replace the traditional distinction between theoretical and nontheoretical con-

cepts. The distinction that we are proposing here is not the same as the observation-theory

dichotomy, because, on the basis of the distinction being proposed, certain notions which we

will regard theoretical may be observational according to the older dichotomy, and vice versa.

In order to bring out the distinction we shall compare the structural features and

certain applications of natural numbers and integers. Consider a situation of loss and profit

in a monetary transaction. In order to know whether a person incurred a loss/profit of

some money in a transaction, we need to relate (compare) one state-of-affairs with another.

Since we can make sense of the meaning of being in a state of loss/profit/balance only in

relation to another state-of-affairs or situation we can say that the meaning of some terms,

such as ‘loss’/‘profit’ gets generated only within a relationship. We can call the form of that

relationship a structure, and the terms that find their meaning in relation to the structure

can be called structure-dependent.

On the other hand consider a situation of counting currency notes when we receive
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them at a bank counter. Each time we count we count them directly, and quite independently

of other states-of-affairs. In this case the amount counted will not have any ‘tag’ attached,

except possibly the units of currency, unlike the above case, where special mention is always

made of whether the amount is to be regarded as loss or profit or balance. Since the de-

scription of the latter situation does not involve any other situations, we call this structure

independent.

In the former case the three different possible situations can be described in terms

of positive, negative or zero situations, depending on whether a person is in profit, loss,

or balance. This should be the nature of the state-of-affairs to apply a system of integers

because there is a clear isomorphism between the three possible states and the three ‘kinds’

of integers.

It is important to note that when a person says he is in a ‘zero’ state of economy

in the former case, he does not mean that he has no money at all with him. Rather he is

referring to a no loss and no profit situation (or neither-nor-situation). So ‘0’ when used in

this case has a different meaning from ‘0’ when used to refer to an empty purse. The two

meanings of ‘0’ mentioned are incommensurable, for they are entirely different measures.

Thus while counting currency notes at the bank counter, we don’t make use of

negative numbers, nor do we use positive numbers, we use numbers pure and simple. This

therefore is a state-of-affairs that needs natural numbers. When integers and natural numbers

are used in entirely different situations, how can we say that integers are ‘superior’ to natural

numbers? For a mathematician whose main concern is to solve algebraic equations, to be in

possession of integers, rationals, reals, etc., is naturally preferable.

Are the operations involved in the two cases the same? No, because in the former

case where we need to state either loss or profit, some calculation is necessary, while in the

latter case we engage in only simple counting. Isn’t calculating different in nature from

counting? Counting may be involved in calculating, but calculating involves more than

counting. Calculation is structure-dependent, while counting is not.

Doesn’t counting involve any structure? After all the series of natural numbers

also has a structural form. But the ‘linear’ order of natural numbers and denomination of

currency are presupposed in both the cases. Since what is common to the two situations does

not enter into consideration when we make comparison, the stated distinction is independent

of these other situations. Thus the crucial point that determines the distinction is whether the

structure that is involved is a pattern suggesting any situational variance or not. We will see

below that proportionality relations that scientists often assert between varying parameters
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are structure-dependent in this sense. Since natural science, in the state in which it is today, is

inconceivable without proportionalities, this distinction is crucial for bringing out its essence.

Another example may make the intended distinction clearer. When we apply color

concepts to describe objects, each application of a kind of color to a state-of-affairs is inde-

pendent of the other, because each color forms a separate category. Different color concepts

generally do not possess any structural relationship with one another. We can say that our

knowledge of colors at this stage is amorphous, in the sense that the place of different colors

in that abstract class of all colors is not in relation to any other colors. However, when we

start understanding some relationship between colors, such as when the three primary colors

are seen as giving rise to the rest of them, our knowledge enters into structural form. This

structure has an order that can lead to what can be called ‘the chemistry of colors’, and is

still not ordered in a manner that can suggest any mathematical order.

On the other hand when a scientist says that an object is emitting a radiation

of a particular frequency, our knowledge of that object’s radiation property is structure-

dependent, because it presupposes the structure of a wave with a specific frequency, wave-

length, amplitude, and velocity of propagation. Here in the specific use of the term ‘frequency’

its meaning is not independent of the other properties a wave would have. This structure de-

pendence is usually formulated in the form of a mathematical equation because the structure

is a relationship that exists between other parameters of a light wave.

Though we might say that emitting a specific frequency by an object means it has a

specific color, this ‘equation’ or ‘reduction’ is misleading just as different uses of ‘0’. Once we

understand the coextensional relationship between a color concept and a particular frequency,

there occurs a transformation in our knowledge of what a color is. This is similar to the kind

of transformation that took place in the case of numbers. Though we continue using the same

symbols they do not refer to the same object. In ordinary usage color concepts are used to

describe objects, while in the case of scientific usage though such a description is possible, the

uniqueness consists in the ability to describe the object color . That is to say that different

kinds of radiation distinguished are different independent objects that scientists talk about.

In this sense the objects of scientific inquiry can be stated to be qualities. The process of

transforming a quality into an object of study is essentially what is involved in making a

quality measurable.8 Since the knowledge of light in terms of frequency, wavelength etc., is

based on proportions (see §6.10 page 195), while the notion of identity employed in the case

of colors is of the type-token kind (see §6.5 for distinction of types of identities, page 174) no

8This is what, we think, is meant in hypostasizing qualities as explained by E. Meyerson, E. Cassirer and
recently by E. Zahar. See §6.7 below.
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identity of the notions can be claimed. In a similar manner the common man’s usage of the

term ‘massive’ is different from the scientist’s usage of the term ‘mass’.

The nature of the distinction that we are proposing is more or less absolute, unlike

the distinction between theoretical and non-theoretical functions proposed by Sneed and

Stegmüller, which is relative. As already stated we think that all scientific knowledge is

structure-dependent, while commonsense knowledge is structure-independent in the relative

sense (because commonsense knowledge is not free of abstractions though free of scientific

abstractions). Since we see a possibility of demarcating scientific structures from non-scientific

structures on the basis of inversion, we think that the dichotomy being proposed should

ultimately enlighten us on the nature of scientific and non-scientific knowledge. The kind

of relativization as proposed by Sneed and Stegmüller would help us in understanding the

distinctions within the body of scientific knowledge, and cannot help us to distinguish science

from non-science. This is because their definition of a scientific theory does not answer

the question: What character is in the structure of a theory as a function of which it can

be said to be a scientific structure? We propose that inversion is that character which

differentiates scientific structures from non-scientific structures. This is our specific criterion

of demarcation.

In the sections that follow, we introduce the sense in which inversion becomes an es-

sential character of scientific knowledge. In the section that follows we shall contrast negation

with inversion in an attempt to demonstrate that inversion is as fundamental as negation.

6.3 Inversion and Negation

Although the idea of inversion is well known and has been used in many different

contexts we will start from preliminaries because of its pivotal role in the thesis. This is also

essential for making explicit the sense in which the idea is seen as an essential logical relation

for a possible logic of construction.

The fundamental nature of the operation negation is well known to philosophers

and logicians. Deductive logic is impossible without negation. We say this on the basis of

the well known fact of logic that with ∼ (negation) and either ∧ (and) or ∨ (or) we can

get a functionally complete system of logic. However, one might say that logical reductions

to one primitive operation, such as alternative denial and joint denial, have shown that a

functionally complete system of logic can be obtained with only one operation (only one

connective, to be precise).9 These claims are interesting when we look at the matter from

9Cf. Quine 1951, pp. 45-49, for the definitions, truth tables and a general discussion of the connectives
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a formal mode alone, i.e., viewing them as only symbols without interpretation—the only

interpretation being the truth tables.10 However, when we look at the manner in which we

start making sense of the above mentioned primitive connectives, we tend to see them as

species of denial or negation. Though the names suggested by Quine, alternative denial and

joint denial, are to be formally viewed only as names of connectives defined in a specific

manner, all applications of them suggest that the primary mode of denial or negation is

implicit.

Take for example, the case of joint denial ↓. The sentence (φ ↓ ψ) is true when both

φ and ψ are false. Therefore, it is suggested that (φ ↓ ψ) be read as ‘Neither φ nor ψ’. In

other words, it is equivalent to the sentence (∼ φ∨ ∼ ψ). Though formally the reduction

to one primitive is successfully achieved, the only cases where such primitives can be applied

are cases where an equivalent form of the sentence would necessarily contain negation. Since

all well-formed-formulae where the joint denial ↓ occurs can be translated into an alternative

form where ∼ and another connective (such as ∧ or ∨) necessarily occur, we can conclude

that it is impossible to construct a deductive system without any primitive connective that

either explicitly or implicitly involves negation.

There is another fundamental reason to regard that deductive reasoning is funda-

mentally dependent on negation. Of the three principles of logic—the principle of identity,

the principle of contradiction and the principle of excluded middle—the latter two employ

explicitly the operation negation. Nothing is an assertion unless we deny at the same time

the negation of the assertion.

Can we conceive of any alternative logics that are not based on the above principles?

Is negation the only species of opposition? Aren’t there other ways of opposition that we

regularly employ in our thought? Since negation is fundamental to any assertion, no logic of

assertion can ever be conceived without it. Are we capable of thinking without employing any

assertions? If the assertive mode of thinking excludes nothing, then it is legitimate to say that

we can’t think without making any assertions. But fortunately our thinking abilities are not

limited to the assertive mode alone. We have a mode of thinking (we may also say we have

a special mode of inference) that is neither inductive nor deductive.11 This alternative logic

is a logic of construction (synthesis), and is therefore necessarily ampliative. The structures

alternative denial and joint denial. Also Copi 1979, Elements of Symbolic Logic pp. 281-282.
10In fact the discovery story of these connectives will be a good instance of constructive thinking.
11We have already argued above (§4.8 page 107) how inductive logic should be viewed as a logic of abstrac-

tion, and that it is based on the principle of excluded extremes.
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that are constructed belong to the logical category of concepts. Since the outcome of the

logic being developed is a concept, and the concept being a structure, the logic can be called

constructive abstraction to distinguish it from inductive abstraction (§4.8 page 107). However,

since we are specifically going to talk about the possibility of articulating a logical mode of

constructive inference that is based on the logical relation, inversion, we will call it inversive

abstraction.

Though modern logic has done remarkably better than traditional logic with respect

to relations, the synthetic role of certain relations have not come to light because of the

predominant tendency to view logic only as a tool of analysis. Dealing with logic always in

a propositional or assertive mode has led to a state where even talking about the possible

patterns of non-assertive modes of thinking means to certain thinkers ‘illogical’.

The inference called inversive abstraction is based on a species of logical opposition

called inversion, just as deductive logic is based on a species of opposition called negation.

The modest objective is to convince the reader that there exists the possibility of formulating

at least one more mode of ampliative inference that is not inductive and being ampliative

certainly not deductive. We will present a tentative and non-rigorous formulation of what is

being visualized.

It is of some interest to note that the notion of inversive abstraction is not too

different from what Hermann Weyl called constructive cognition, or constructive abstraction

(See below §6.3 page 169). We are attempting to enrich the notion by necessarily linking it

with a logical relation of inversion—towards a methodology of ampliative logic. Weyl also

contrasts it with inductive abstraction. He discusses the example of the formation of the

concept of mass by Galileo who defines it as follows: Two bodies have the same mass if, at

equal velocities, they possess equal momenta. This definition is arrived at by mental (creative)

and experimental construction and is not inductively arrived at. In this case experimental

manipulations are made, unlike in the realm of numbers where intellectual manipulations

are made. These experimental manipulations make numerical determination of characters

possible. Historically this was a turning point, because, before Galileo only geometrical

characters are known to be amenable to numerical determination.12 In the process mass

became the dynamic coefficient according to which inertia resists the deflecting force. Motion

12Describing this Weyl says: “This is a step of great importance. After matter was stripped of all sensory
qualities, it seemed as first as though only geometrical properties could be attributed to it. In this respect
Descartes was wholly consistent. But it now [after Galileo] appears that other numerical characteristics of
bodies can be gathered from the laws to which changes of motion in a reaction are submitted. Thus the sphere
of properly mechanical and physical concepts is opened up beyond geometry and kinematics.” (Weyl H. 1949,
Philosophy of Mathematics and Natural Science p. 148.)
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according to Galileo, depends on the struggle of two [opposing] tendencies, inertia and force,

force that deflects the body from the path dictated by inertia.

This conceptualization of mass is markedly different from the Aristotelian way of

ascending from particulars to universals, where only the really existing objects are concerned,

for it is inductive.

In the mathematical-physical or ‘functional’ formation of concepts, on the other
hand, no abstraction takes place, but we make certain individual features variable
that are capable of continuous gradation, ... , and the concept does not extend
to all actual, but all possible objects thus obtainable.13

Therefore induction, as already noted in the above chapter, cannot explain the genesis of

notions such as mass. For such concepts we need constructive abstraction. Weyl’s character-

ization of it is as follows:

1. We ascribe to that which is given certain characters which are not manifest
in phenomena but are arrived at as the result of certain mental operations. It is
essential that the performance of these operations is held universally possible and
that their result is held to be uniquely determined by the given. But it is
not essential that the operations which define the character be actually carried
out.

2. By the introduction of symbols the assertions are split so that one part of
the operations is shifted to the symbols and thereby made independent of the
given and its continued existence. There by the free manipulation of concepts
is contrasted with their application, ideas become detached from reality and
acquire a relative independence.

3. Characters are not individually exhibited as they actually occur, but their
symbols are projected on the background of an ordered manifold of possibil-
ities which can be generated by a fixed process and is open into infinity.14

The themes that we are presently developing are more or less contained in the above points on

abstraction. In the context where the mental operations are performed, scientists are hardly

concerned about the application, and thus they are in a nonassertive mode of thinking.

Another point to take note of is regarding the role of the given. (See the underlined portions

in the above quotation.) Though in constructive abstraction scientists begin from the given,

they eventually get “detached” to acquire “independence”. This becomes essential in order

to transcend the limitations of inductive knowledge. The idea is not only to understand the

given, but also to understand the “manifold of possibilities”. Thus:

All knowledge, while it starts with intuitive description, tends toward symbolic
construction.15

13Ibid, p.150.
14Ibid, p.37-38. Boldface is ours, italics are original.
15Ibid, p. 75.
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Weyl further says, citing Dilthey, that the scientific imagination of man is regulated by the

strict methods which subject the possibilities that lie in mathematical thinking to experience,

experiment, and confirmation by facts.16 Thus we ‘inherited’ a lot from Weyl’s insightful

thoughts. In order to further this line of thought, however, it is insufficient to prove the strict

methodological (logical) character of construction. We suggest that inversion, being a logical

relation and—most importantly—being a constructive relation, contains the secret of a logic

of construction. In what follows we present in what sense inversion plays a crucial role in

this context.

We will use the term ‘inversion’ for a special kind of relation where the two terms

that are oppositely related are opposite, or inverse, by virtue of a third term. In other words,

the notion of opposition that is involved here is relative to a third term. Metaphorically

speaking, here we not only have two opposite poles, but also a center. The three terms

involved will be called a triad ; the structure thus formed will be called inverse structure; and

the mode of thinking that leads to such a structure will be called inverse thinking . Since it

is by virtue of the third term that the specification of the inverse relation is made possible,

the inverse structure will be identified by the name of the third term, and the third term of

the structure will be called the identity element .

For example, −2 and +2 are inversely structured with respect to the identity element

0; 2 and 1/2 are inversely structured with respect to the identity element 1. These examples,

and the use of inversion in mathematics is well known. However, the point of the thesis is to

demonstrate that it is the same inverse structure that gives shape to all scientific knowledge.

Many examples from natural sciences will be presented below.

Both polar thinking and inverse thinking yields structures that put together the

opposite terms. The nature of opposition involved in these special cases is such that the

opposites are not viewed as contradicting one another, but are parts of the same structure.

Since the opposite terms necessarily belong to one single structure they are both applicable

together at the same time to that structure. The terms that are related by negation are not

applicable to the same thing at the same time, as stated in the principle of non-contradiction:

nothing can be both P and ∼ P at the same time. The terms that are related by either

inversion or polarity are applicable to the same object at the same time. We will consider

this principle sufficiently fundamental; it therefore needs to be added to the list of principles

of thought . We will call it the principle of included extremes, for the opposites are included

without contradiction in a structure.

16Ibid, p. 151.
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We will illustrate the fundamental significance of the principle of included extremes

in the genesis, development and the structure of scientific knowledge.

6.4 Coordinates of Scientific Knowledge

The relation between a type and its tokens can be said to be a one-over-many

relation, which is also the relation between universals and particulars. This relation usually

establishes a hierarchical order of things, for the two things so related belong to different

levels. On the other hand a one-to-one relation brings two things of the same level into an

order. Such an order is usually referred to as ordered pairs. Classification of things is a good

example of one-over-many relation, while functional relations provide excellent examples for

one-to-one relation.

The distinction between the two types of relations is rather well known, and hence

hardly requires any further illustrations. However, we find it insightful to view the matter in

a different manner. Since one-over-many relation introduces difference in the level of things

related, we tend to depict such a relation by placing the things one above another in a vertical

manner. Let us therefore call the systematization that is established by the employment of

one-over-many relation a vertical systematization. An axiomatic system is a vertical system-

atization because the axioms and the theorems have a one-over-many relation. The structure

of a hypothetico-deductive model is also vertical for the same reason. Taxonomic system-

atization is another example of vertical systematization, because the classes are arranged in

several levels—one higher class including the subclasses in a nested manner.

Likewise, since a one-to-one relation is obtained between things of the same level,

we can visualize them side by side in a single horizontal plane because the things thus re-

lated belong to the same level. Therefore, let us call the systematization that is obtained

by a one-to-one relation a horizontal systematization. The various parameters that are func-

tionally related in a physical system can be viewed as an excellent example of horizontal

systematization, because all the parameters thus related are located in a system together ,

hand-in-hand, to form a sort of a horizontal ‘plane’. For the same reason models also are

horizontally systematized. However, the relation between a model and a physical system, as

stated in a scientific assertions, is not horizontal but vertical. Because one model can have

several physical systems as its instances, and as stated in the above chapter (§5.2 page 127),

the proper relation that obtains between them is of the one-over-many kind. There can be

several levels of models that can be placed one upon the other, depending on their gener-

ality (level of abstraction). For example, the three models, M , Mp and Mpp, described by
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Stegmüller are structures related in a vertical order, though each kind of model is horizontally

systematized. We shall shortly return to this point below.

Another kind of systematization should also be noted for the sake of giving a more or

less complete picture regarding the kinds of systematizations obtainable in science. This third

kind is evolutionary systematization. This kind of systematization is achieved by mapping the

taxonomic order of systems on one hand, with a temporal antecedent and consequent relation

of them on the other hand. The manner in which different organisms or systems have been

located in a temporal evolutionary scale on the basis of the antecedent and consequent relation

constitutes an excellent example of this third kind.17

These three kinds of systematizations can be viewed as the x, y, and z coordinates

of scientific knowledge. The map of scientific knowledge that we are going to draw will

make use of this manner of visualizing the different ways of scientific systematization. In

this thesis, however, we will not deal with the vertical and evolutionary systematizations, for

the objective of our study is to highlight the role of inversion in the generation of scientific

objects such as definitions, models, and systems that come under the horizontal kind of

systematization.

This distinction between the horizontal and vertical systems can now throw more

light on the nature of the distinction between what is and what is not a statement. We will

regard a statement (or an assertion) as an instance of a vertical system, because types and

tokens belong to logically distinguishable categories of intension and extension respectively.

We think that nothing is a statement if it is not a relation between an intension (type) and

extension (tokens). This notion of statement can be applied to both individual statements

and general statements, because in case of the general statements the place of extension will

be a class of tokens, while in the case of individual statements it will be a token. Meta-level

statements can also be interpreted in the above manner. Even for a relational statement this

specification is sufficient, because in such a case the extension will be a pair, or a triad, etc.,

depending on whether the predicate is diadic, or triadic, etc. In fact all scientific assertions

must be relational statements, in this sense, because—as stated above (§5.2 page 130)—the

model and physical systems are stated to be related by isomorphism, over and above the type

and token relation. Thus we think relational statements are special kinds of subject-predicate

statements. A complete argument for this claim cannot be worked out here. We will however

presuppose this, and develop the rest of the thesis on this basis.

We will regard any structure or system as a nonstatement iff the relation between

17Though we originally intended to illustrate this kind of systematization as a separate case-study in the
thesis, we could not ultimately incorporate due to time constraint.
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the terms is horizontal, i.e., the terms belong to the same level. The terms may all belong to

the extensional category—as in the case of a physical systems, or the terms may all belong

to the intensional category—as in the case of models and scientific definitions.

It is our claim that scientific knowledge is a product of both horizontal an vertical

systems.18 We further propose that horizontal structures of science, namely models, scien-

tific definitions, and physical systems, are structures constructible on the basis of inversion,

while vertical systems of science, such as taxonomic and hypothetico-deductive systems, are

constructible on the basis of negation.

Horizontal structures are necessarily nonstatemental in nature. Stegmüller’s models

are horizontal structures, though each of them is related to the next level of models in a

vertical order. It is this possible relation that enables the metalevel statements. In order

to see the relevance of this observation let us consider the nature of the work of a physicist,

theoretical physicist, and a pure mathematician. The levels which a theoretical physicist,

for example, would mostly be dealing with are always above physical systems. His concern

is usually studying the properties of the objects of a theoretically modeled world (possible

world). The statement of a scientist when engaged in this sort of work can be stated to be

applicable to the simulated world alone. A mathematician can be said to be working at other

levels higher than a theoretical physicist. The statements made at this higher level would be

descriptive of the models that become instances of the abstract algebraic structures. More

higher levels of abstract engagements can further be identified where foundational attempts

resembling those of Felix Klein’s Erlanger program, or of the French structuralists’ program

of Bourbaki. At the lower level when a scientist states a relation between a model and the

realizable physical systems that are believed to belong to this world, we get what can be

called the scientific assertions which are either true or false. All other statements possible

at higher than this level can be said to be providing the semantics (conditions of truth and

falsity) to the possible applications of the various levels of conceptions.19

The difference in the levels of the various possible statements that scientists could

(and do) make is another reason why a large structure such as classical particle mechanics

should not be considered a single nonstatement (structure) as Stegmüller suggests. Therefore,

we think that the defenders of the nonstatement view should make room for the various

possible statements scientists make, by following our suggestion of vertically ordering the

18Since we are not elaborating the third evolutionary system at present, and we cannot not visualize at the
moment what kind of picture might emerge after incorporating the third ‘dimension’, the above statement
may be regarded tentative.

19It may be less confusing if we could conventionally name the different levels of statements possible by
identifying them with the level involved.
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various possible models. The number of levels of models need not be just three as Stegmüller

suggests and we see no a priori reason for such definite specification. The defenders of the

semantic approach should allow for enrichment of the view by distinguishing the different

levels of models. We think that the conditions suggested for distinguishing the statement

and nonstatement components on the basis of vertical and horizontal systematization should

be acceptable to the defenders of the semantic approach and nonstatement view. With these

suggested alterations, we see the possibility of lessening the problems of adjustments between

the two structuralist positions.

Though the scientists’ ultimate objective can be perceived as dealing with this world,

their engagements higher up in the world of abstractions can in no way be regarded as non-

epistemological on the ground that they do not deal with ‘hard’ truth. Most conceptions,

i.e., nonstatements, of science have taken birth in these fertile contexts. Though several

examples can be cited, the example of the abstract construction of the group of invariant

transformations of velocity by Lorentz and its subsequent application by Einstein to the case

of light can be regarded a paradigmatic one. To distinguish the nature of their achievement

we can say that Lorentz invented the concept of velocity invariance, and Einstein discovered

an application for the former’s invention. This is one of the areas where a generativist has to

search for the possible patterns of discovery (or invention), the other area being the genesis

of physical systems from phenomena, as suggested in the last chapter, which will be dealt

with in greater detail in the case-studies.

Most of the attention of philosophers of science has been paid to studying the

logical properties of vertical structures or systems, which any way are definite constituents

of scientific knowledge. However, the study of horizontal structures has not attracted many

thinkers in mainstream philosophy of science. The study of horizontal systems, models,

definitions, and physical systems, as important constituents of the anatomy of science has

only recently, after the failure of the positivist’s attempts, attracted the attention of the

followers of the semantic approach. We think very strongly that these new non-traditional

categories of understanding scientific knowledge will provide a significantly richer framework

for future studies on this subject.

6.5 Types of Types

One common notion of the identity of an object or a class of objects emerges out of

understanding similarities and dissimilarities between properties. This is more or less based

on comparing one object with other objects in its environment. A reformulated definition of
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universals as offered by Socrates (see above §1.1 page 14) is obtained in this manner. The

form of this definition shows clearly how an understanding of this notion of identity depends

on the operation of negation. It is common practice to interpret this notion of identity in

terms of a class—the property shared by a class of objects. This is more or less the same

thing as what the type stands for in a type-token relation. Therefore, let us call this notion

of identity type-token identity .

We are however interested in highlighting another notion of identity, that has become

rather central to science, including mathematics. This notion of identity occurs in almost

every discipline of science and is so predominant that it would be rather surprising to know

how little this notion is employed in characterizing scientific knowledge. We would like

therefore to give full attention possible in explicating the epistemological significance of this

identity as well as its logical relation with inversion.

This identity, unlike the other, does not emerge out of the persistence of a quality

in object/s, it emerges out of change or variability or flux or transformation . . . of object/s.

This identity refers to the invariant pattern of variation by capturing the substance of change.

Right from antiquity the problem of explaining transforming properties of things has been a

riddle, which ultimately finds consolation in this special notion of identity. We will call this

vital notion invariant identity or simply invariance, though it is also known by several other

names, such as equivalence.

We can find examples of invariance abundantly throughout quantitative science.

Detailed discussion with further characterization and illustrations will be found throughout

the following text. Therefore we shall be content with two simple examples here. Motion is

usually regarded as a property of things. However, science deals with it as if it is in itself

an object, because a scientist is not interested in the object that is moving or the kind of

object that is moving, but motion per se. Galileo—as a true scientist—was interested in the

substance of motion, and the notion of inertia and acceleration have thus became the first

invariant properties of motion to be discovered. How inertia became a parameter of motion

will be elaborated in the case-studies.

Weight can be characterized as a measure of quantity of matter of an object. How-

ever, the weight of the same object may change from place to place, hence it is variable.

Therefore weight cannot be regarded as a satisfactory measure for quantity of matter by

a scientist due to its variability. The discovery of mass as an invariant identity for a spe-

cific quantity of matter solved the problem. Likewise almost every measurable dimension of

science has a corresponding invariance.
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We are not very certain about whether this identity is the same as Leibniz’s notion of

the identity of indiscernables. We have therefore decided to develop the notion independently

to avoid confusion. Another reason for doing so is that we are going to essentially link this

notion of identity with inversion. This linkage to the best of our understanding has precedence

only in modern mathematics and in the genetic epistemology of Jean Piaget. It may also be

pointed out that anticipation of this notion of identity can be found in the writings of Ernst

Cassirer, Emile Meyerson and Herman Weyl. However, we cannot at the moment either trace

the history or explicate clearly the affinities or differences of this special notion with those of

other thinkers, except with Piaget. In Piaget, more than anyone else, the notion acquires a

very special significance specially in the context of generation, as well as its connection with

inversion.

There is another notion of identity in which philosophers have shown a lot of interest.

An object might undergo changes or variations in one or more than one property over a period

of time. Take for example, water, which may appear in different shapes, different states like

vapor, ice, etc. Despite these changes one or more property of objects may remain unchanged.

The Aristotelian name for such properties is the essential property, as against the accidental

properties that are taken to be contingent. This notion of identity continues to enjoy attention

even to this day.20 Kripke would interpret this kind of identity as that property of an object

which it will have in all possible worlds, and therefore such identities are asserted by using

necessary or apodictic modality , as against possible or problematic modality .21 Since scientific

knowledge is also regarded to be about the essences of things, this notion of identity of things

has been regarded as a significant notion of identity of scientific concepts despite a number

of philosophical problems. All natural kind terms are regarded as of this variety. Since it

is easy to recall this notion of identity by the term ‘natural kind’, let us call this variety of

identity of things as the natural-kind-identity.

We will regard invariance and natural-kind-identity as two distinct notions based

on the interpretations given, and this distinction is indeed very vital for understanding the

nature of scientific knowledge. Natural-kind-identity, as stated above, is that ‘portion’ or that

aspect of an object or an individual that is unchanging in its history. In the case of a class

of objects it is that commonness obtained after excluding all contingencies. On the other

hand invariant identity is about the essence of a changing property of an object. Since most

natural-kind entities are members of a taxon,22 they are obtainable as a result of taxonomic

20Modern essentialists like Kripke, Putnam etc., have attempted to defend a version of essentialism.
21S. Kripke 1972, Naming and Necessity in Semantics of Natural Language, ed. by Donald Davidson and

Gilbert Harman 1972.
22Taxon is not merely a class. Though all taxons are classes, all classes are not taxons. Taxon may be
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systematization. Invariance, on the other hand, ‘refers’ to the essence of a property, rather

than an individual. In other words, invariance is properly attributable only to attributables

of an object. Therefore, we think, the two notions, natural-kind-identity and invariance are

significantly different, though both are very useful in characterizing scientific knowledge.

6.6 Inverse-Definite-Descriptions

A description when used in a manner that it would pick out one and only one object,

we call a definite description. In scientific communication scientists are mostly engaged with

general concepts or objects, and hence definite descriptions are seldom used. It does not

therefore mean that scientists do not engage in any specificity or that they do not refer to

any identities. The clarity that is usually attributed to scientific thinking is also because of

the definiteness of scientific assertions. Sometimes they need to locate a point in space in an

unambiguous manner. And some other time they need to individuate one specific conceptual

object in a ‘world’ of concepts. Thus, there is more than one level at which scientists need

to talk in specific terms. Is there any specific method of achieving this scientific exactitude?

Kripke’s notion of rigid designator would be one possible answer.23 A number ‘9’,

for example, can be rigidly designated by the expression ‘square of three’ (32 or 3 × 3). But

an object like the number 9 can be rigidly designated in an infinite number ways, and by

any of them we can designate the object definitely. For example, instead of 32 we could have

used 10 + −1, 90/10, 5 + 4 etc.

We have seen above (§A page 319) that each group has a unique identity element .

That identity can be referred to by either a finite or an infinite class of descriptions depending

on the kind of structure used to designate an identity. For example, in the case of integers

under the operation addition, 0, which is the identity element with respect to addition +,

can be referred to by (+1) + (−1), (+2) + (−2), (+3) + (−3), · · ·. Thus we can interpret a

group as containing or as generating a finite or infinite class of inverse definite descriptions

referring to an identity. Each such description consists of a pair elements which are inverse

to each other with respect to a definite operation giving rise to an identity. Any one of the

descriptions of this kind are sufficient to achieve the reference for the identity. This special

kind of description with inversely related elements is a unique way of describing objects. We

will call the class of such descriptions which designate an identity definitely by the name

defined as a multidimensional class, because it is a coextension of necessarily more than one property. The
members of a taxon share constitutional or organizational or structural similarity.

23Cf. S. Kripke 1971, Identity and Necessity in Ted Honderich and Myles Burnyeat 1979, Philosophy as it
is p. 467ff.
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inverse-definite-descriptions. For the identity (object) 0 the following is the class of inverse-

definite-descriptions:

0 ∼

























+1 −1

+2 −2

+3 −3
...

...

+n −n

























(6.1)

where ∼ is the relation invariant identity (See §6.5 page 174) or equivalence, and n is any

integer.

Just as 0 can be identified in an infinite number of ways using the inverse elements,

similar set of identifications are possible for other numbers. In the case of number 9, the class

of descriptions that would identify number 9 can be obtained, as above, either employing an

additive operation or with a multiplicative operation. For generating the class of inverse-

definite-descriptions for number 9 (as a member of integers) the generation process can be

described as follows:

9 ∼ [K + (9 −K)] (6.2)

where ∼ is equivalence relation, and K is any integer. Thus for the integer 9 the following,

for example, are the inverse-definite-descriptions:

9 ∼

























10 −1

5 4

−247 256
...

...

K K̄

























(6.3)

where K and K̄ designate the inverses. Since the pairs 10,-1; 5,4; -247,256; · · · are not inverses

with respect to the simple operation of +, but the special additive operation with 9 as its

identity, it is appropriate to designate the operation differently. We will designate the above

complex additive operation as ⊕9. Using this notation the above equation becomes:

9 ∼ [K ⊕9 K̄] (6.4)

The following generation procedure produces a structure of a class of additive inverse-definite-

descriptions for any given integer n,

n ∼ [K ⊕n K̄] (6.5)
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where K is any integer. Similarly one can work out a structure of inverse-definite-descriptions

for any number whether the number belongs to a set of integers, rationals, reals etc., by

appropriate stipulations. The class of inverse-definite-descriptions generated for an object

may be obtained by employing either an additive operation or multiplicative operation. For

generating inverse-definite-descriptions for a specific real number r the procedure is as follows:

r ∼ [R⊗r R̄] (6.6)

where R is any real number.24

What is the significance of viewing the matter in the manner suggested above?

According to the view of science being developed here, one of the main pursuits of sci-

ence is to discover inversely systematized structures. The nature of objects scientists deal

with are in this view dependent on inverse systematization. The possibility of inverse-

definite-descriptions presupposes structure-dependent or indirect knowledge of the object.

Structure-independent knowledge or direct knowledge of things can not have inverse-definite-

descriptions because inverse relation necessarily constructs a structure. Since we claim that

all scientific knowledge is structure-dependent knowledge and the kind of structures we find

in science are inverse structures, we claim that to have scientific knowledge of an object is

to have inverse-definite-descriptions of that object. In this special kind of relational manner

of identifying objects, i.e., by inverse-definite-descriptions, there are a family of descriptions

that refer to an invariant identity. This, we claim, is a characteristic feature of the structure-

dependent knowledge of science. We further claim that models, systems and definitions that

we often come across in scientific discourse are examples of inversely systematized struc-

tures. In what follows we shall provide an interpretation of definitions, models and systems

in terms of inverse-definite-descriptions. This interpretation would enable us to explain the

role of inversion in the structure and generation of scientific knowledge in terms of inversion.

24It may be noted that the elements that form inverse-definite-descriptions may also be defined as a group
structure. For example, the set of all elements that form inverse-definite-descriptions for 0 and 1 can also
be constructed as groups under operations + and × respectively. For numbers other than 0, it is possible to
construct inverse-definite-descriptions using the general formula 6.6.

An identity element n can be defined with respect to an operation ⊗n and the set G has the elements

[· · · n/4n, n/3n, n/2n, n/n, n, 2n, 3n, 4n, · · ·].

The structure < G⊗n > can be shown to be a group. The set G contains nothing but the elements that form
inverse-definite-descriptions.

The inverse-definite-descriptions given for the identity 9 in the thesis using an additive operation ⊕9 is not a
group. However it does not therefore cease to be a inverse-definite-description. It will not be possible to show
for numbers other than 0 that the inverse-definite-descriptions will form a group using an additive operation.
Group structure is desirable, but nor necessary, because it has interesting properties such as closure.
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6.7 Inverse-Definite-Descriptions and Scientific Knowledge

We shall first provide an interpretation of scientific definitions. In modern science

it is usual to express definitions of most concepts in mathematical form. Needless to say

only quantitative notions can be expressed in mathematical form. In this section we will

attempt an analysis of functional definitions of quantitative concepts employing the notion

of inverse-definite-descriptions, introduced in the above section. In the course of this section

the distinction between definitions, models and physical systems would become more clear

and distinct. We shall take the example of the definition of momentum to illustrate our point.

The definition of momentum is given in terms of mass and velocity. The equation

expressing the relationship between momentum P , mass M , and velocity V is given by

P = M × V. (6.7)

For any given value of momentum Pi there can be a class of inverse-definite-descriptions,

because mass M and V of a particle are covariant when P is invariant. The following

structure is a representation of the identity Pi in terms of inverse-definite-descriptions:

Pi ∼ [Mx ⊗P Vy], (6.8)

where x is any value from the domain of valuesM can take, and y is any value from the domain

of values V can take. Since these values are magnitudes they are not to be considered mere

numbers. This is another reason why the operation here is not the usual multiplication ×,

but a specific operation ⊗P , relating the elements of the domains V and M in a one-to-one

manner, and the elements related as one-to-one are inverses with respect to the operation.25

This description of Pi suggests that Pi can be obtained by various invariant pro-

portions of velocity and mass of either different bodies or of the same body. When we look

at each inverse pair of values as referring to different bodies, we don’t get a very significant

picture. However, if we consider that these various pairs of values of mass and velocity are

the values that a single body takes as time progresses, we get a very significant and interest-

ing situation. We get a dynamic system where the velocity of a body varies inversely to its

mass by keeping its momentum invariant. Thus, the sequence of inverse-definite-descriptions,

in this case, constructs a dynamic state-of-affairs. This state-of-affairs can be a model of a

scientific assertion which states the invariance (or conservation) of momentum.

25Let us clarify here that the usual interpretation of a function in terms of one-to-one relation is not being
disputed. We are making a further point by stating that an one-to-one relation be interpreted as an inverse
relation.
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The equation (6.8) therefore can be seen as representing the structure of a model.

This is a model because this is the kind of possible world or state-of-affairs where invariance

of momentum comes out entirely true. This is in accordance with the definition of a model

given above (§5.2 page 128): The circumstances in which a scientific assertion is entirely

correct or true is called a model. The equation (6.8) in the present formulation is ambiguous,

because it may be seen as representing for two different state-of-affairs—for various particles

with the same momentum and the same particle with different momentum. This can be

avoided by imposing a relevant constraint.

The case of rocket propulsion is an actual physical system where the rocket takes

on covarying values of mass and velocity, while the momentum of the system is invariant.

As the rocket accelerates (i.e., takes on increasing values of velocity) the mass of the rocket

takes decreasing values, but the momentum of the system remains conserved. This physical

system is an instance of the model of the theory of conservation of momentum. While it is

not very difficult to find an instance where mass is constantly decreasing, by increasing the

velocity, the same model can account for a reversible phenomenon. That is, when the body

constantly gains mass, the velocity should constantly be lost. We may not find any physical

system where such a situation can be observed. But, such a situation is indeed a possible

state-of-affairs. Most physical systems are therefore only partial replicas of a theoretically

constructed model. While it is possible to theoretically construct many possible worlds, all of

them may or may not be actually obtained. Here lies the potential and uniqueness of inverse

reasoning as against inductive methods of obtaining knowledge.

Thus it is possible to construct a model given a functional definition of a measurable

dimension using the method of constructing inverse-definite-descriptions. Here we have pre-

supposed the availability of a definition. We have dealt with the construction of a definition

by inverse reasoning in the case studies, where the problem of conceiving physical systems

from a systematic study of the phenomena is also discussed in detail. The problem of quan-

tification from a qualitative understanding of phenomena is more difficult than moving into

the higher levels of mathematical abstraction once a functional relation is obtained. This ob-

servation can be substantiated from a number of instances from the history of science. The

initial quantification of a problem often takes centuries, while further investigations based on

the initial break-through goes normally at a relatively quick pace. Therefore, we have con-

centrated more on the role of inverse reason in the initial break-throughs in the case studies.

This is not to suggest that the latter does not pose any serious problems, but only that the

nature of the problem is different.
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We shall proceed further to discuss the role of inversion in model construction. Given

a functional definition, such as (6.7), we usually transpose the terms algebraically to get the

following equations from (6.7) giving rise to the ‘derived’ definitions of mass and velocity:

M = P/V. (6.9)

and

V = P/M. (6.10)

Both mass and velocity have definitions independent of the structure such as (6.7) where

they are functionally related to momentum. It is usually considered that the three equations

say the same thing. This follows from our common understanding of functional definitions,

according to which a mathematical equation or formula can be reduced to a consistent relation

between variables. Consider for instance what Holton and Rolland say in this connection.

Mathematical formulations impose several conditions upon the form and content
of scientific work. For instance, those who were formerly prone to think of a
postulate as a relation between cause and effect must instead come to regard it
as a relation between variables. Thus in an expression of the type X = Y Z, we
can just as well write Y = X/Z, or Z = X/Y , and there is no way of telling
whether X or Y or Z is a cause or an effect. In other words, it is on the whole
more fruitful to think of an interaction rather than a simple causation, and to
ask what factors is X related instead of what causes X.26

This passage is correct insofar as it describes the nature of transformation that took place

historically, from causal analysis of terms to functional (mathematical) analysis of terms.

Here the difference between the former interpretation of a postulate in terms of the cause-

effect relation (causal correlation) and the latter interpretation where the variable terms

are related by covariance are clearly well stated. But it is important to distinguish the

level at which we can do the algebraic transpositions freely (without much constraint) from

other levels. When scientists construct a model from the given definitions, they need to

impose certain constraints on the values the variables in the definition can take, so that

some definite conception be obtained. In the world of absolute variables no differentiation is

possible, and since without differentiation no conception is possible, we say that in order to

obtain an identity, a conception, it is necessary to regard certain terms invariant. However,

by changing the constraints now on one term, and now on another, different models can be

obtained. Since a model is a model only if it is a definite construction, we think that this

methodological stipulation is necessary, i.e., at a level where scientists deal with a definite

26Holton and Roller 1958, Foundations of Modern Physical Science, p. 224.
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model, they cannot regard certain terms in the equation as mere variables. In fact, we will

argue that, they need to regard at least one term as invariant. Nothing can be a model if

every parameter in it is regarded as a free variable.

Another way of viewing the matter is to state that a scientist is different from

Parmenides or Anaximenes, who regarded the world as a Being that is undifferentiated. At

a mathematical level we possibly behave like them, but when we begin to construct local

paradigms, we cannot afford to remain in an undifferentiated realm. In this context, let us

contrast our position with that of Meyerson’s principle of identity as stated by Elie Zahar:

According to Meyerson, all explanations, whether scientific or commonsensical,
spring from one basic tendency of the human mind; namely the tendency to deny
diversity and change; or to assert the existence of constants behind the fleeting
appearances; or to explain the Many in terms of the One; or to subsume the
flux of Becoming under the immutability of Being. The best formulation, in my
opinion, is that the human mind inevitably tends to deny diversity and assert
sameness or identity both in space and in time. For the human mind, only the
undifferentiated One is real, everything else is appearance.27

It is correct to say that scientists have a tendency to look for invariance, but the nature of

invariance they look for is different from the kind of Parmenidian invariance. Scientist’s do

accept a variety of invariant identities, each of them independent from the other. Though

scientists create undifferentiated abstract structures, they are ultimately employed to con-

struct specific models with local applicability. Metaphorically speaking, they do go up to get

a heavenly view of things, but only to return with a divine image of things. It is therefore

not correct to say that “only the undifferentiated One is real”. A correct description of the

scientists’ activity would be to say that only the extra-phenomenological differentiation is

real. What is extra-phenomenological is elaborated in §6.10 below.

The nature of the work of the scientist changes in the very act of stipulating the

domain for a given term. By doing so he has already come a step nearer to specificity, by

stepping out of the free ‘world’ of algebra. Of the three terms present in the equation, we

can consider one of the terms as constant or invariant, allowing the other two terms to take

on different values from a specified domain.28 But how free are the other two variables after

making one of them invariant? Since the other two terms are covariant, fixing one of the

values will mean a lot of specificity, because sufficient definiteness will be introduced in the

structure such that the obtained structure can now be descriptive of a state-of-affairs.

27This is as stated by Elie Zahar 1980, ‘Einstein, Meyerson and the Role of Mathematics in Physical
Discovery’ British Journal for the Philosophy of Science 31 p. 9.

28For convenience we have taken only definitions involving three terms. Similar analysis can however be
extended to those with terms more than three.
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Since there are three variable terms in the above definition of momentum, we can

generate three general statements by considering one of them a constant as follows: (a)

When momentum is kept invariant, mass and velocity are covariant; (b) When mass is kept

invariant, momentum and velocity are covariant; and (c) When velocity is kept invariant,

momentum and mass are covariant. These three general relational statements obtained from

the given functional definition do not say the same thing. That is to say they describe three

distinct and independent states-of-affairs. It is not necessary that if one of the statements is

true the other two also be true in the same world. However, whether actually true or not a

theoretician can construct a possible world where they all come out true.

In what sense are these three statements independent? We usually consider anything

a statement if it is an assertion about a state-of-affairs. Two statements therefore can be

considered independent statements if what they assert is about different states-of-affairs.

The three statements (a), (b) and (c) are independent statements in this sense. Since the

statement (a) is true in the situation described by the model represented by the class of

inverse-definite-descriptions for momentum as specified in the equation (6.8), we shall consider

here the generation of a state-of-affairs where the other two statements come out exactly true.

Consider that for a mass Mi the following class of inverse-definite-descriptions is

given:

Mi ∼ [Px ⊗M Vy]. (6.11)

If each pair is considered a unique description of different masses then the model describes

a possible world with several bodies, all of them with same mass, but in different states of

motion. This model is descriptive of a system with discrete entities. A more significant model

obtains when each pair is considered to be referring to the same particle at different times.

A body of mass Mi thrown vertically up-wards and then its free-fall is an example of this

model where in both cases of upward and downward motion the covarying pairs describe

the motion of the body in a unique manner. Though we have obtained this class of inverse-

definite-descriptions (6.11) from the same functional definition, when the constraint is on the

mass term of the structure (definition), the obtained model—also a structure—is distinctly

different.

Similarly we can consider this time the class of inverse-definite-descriptions for a

given magnitude of velocity Vi:

Vi ∼ [Px ⊗V My]. (6.12)

This could be descriptive of a discrete state-of-affairs where all bodies with different masses

and momenta moving with the same velocity, whether at the same time or at different times.
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In a different construction of a model where the values are given to the same body, the

situation is rather difficult to conceive. What can be an application of such a model? Do we

know of any particle or body that shows variation of mass and momentum over time in such

a manner that the velocity is kept invariant? We can possibly construct a space vehicle with

an internal device (say a builtin rocket) to control the momentum in such a manner that it

produces a constant velocity. Since the velocity is constant the state of motion is actually an

inertial state, but of a unique kind. Whether we obtain a system of this kind in this world or

not, the constructed model has a definite meaning and can remain a pure construction till we

can find an instance. Since inverse-definite-descriptions can construct models with or without

immediate application, the methodology is significantly ampliative. Unlike induction, where

no conception can emerge without application, in the case of knowledge constructible on the

basis of inversion, concepts can be conceived much ahead of discovering any application. The

method of inversion therefore is a theoreticians’ tool of constructing possible worlds. These

examples are very simple. But they inform us of the constructing potential of the inverse

relation.

If from a single functional definition so many models—all of them descriptive of

different state-of-affairs—can be constructed, then it is needless to say that with so many

functional definitions that scientists have in hand, a manifold of models can be generated.

Some of the constructions thus obtained may only have projected (potential) application.

Since all these models are structures and can have potentially many applications, we will

regard them as complex-predicates or complex unsaturated propositions. As already mentioned

the role of inversion in obtaining functional definitions will be taken up in the case-studies.

Another point to take note of is the significance of several inverse-pairs. Any one

inverse-definite-description out of the class of them can, logically speaking, designate the

invariant identity. But that is not a sufficient condition for either verifying or falsifying most

scientific assertions which are assertions stating proportionalities. In order that a statement

asserting proportionality be verified or falsified, it is necessary to consider many cases because

the relation asserted is not a relation between constants but about an invariable covariant

relation between variables. To designate, for example, the state of a phenomenon all pa-

rameters cannot remain constant. Nothing is a state if all descriptive parameters of it are

constant. Therefore, Pi will be a scientifically significant identity only if it can have more

than one inverse-description.

Therefore for statements asserting proportionality such as mentioned above, it is

required to have a class of inverse pairs in order that it be a significant scientific statement.
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This should be given special significance because the essential nature of scientific assertions

as well as scientific objects (models and physical systems) emerges out of this. Since most sci-

entific assertions are assertions of proportionalities, the conditions under which they become

true are conditions in which a class of inverse-definite-descriptions can be obtained.

It follows from the above stipulations that the case where all the three terms of an

equation are constants, cannot in isolation become either a falsifying or verifying case of a

significant scientific assertion.29

Consequently we suggest the following interpretation of universal constants. Take

for example the case of the universal constant, such as the speed of light. The constancy of

the speed of light is the invariant relation or the nature of covariance between mass and en-

ergy, as stated in the famous equation: E = mc2. Universal constants become very significant

constraints in the construction of models because no possible world can ever be constructed

where the value of the constants, if relevant in that construction, can vary. Though momen-

tum, mass, energy etc., are conserved quantities, they however continue to be variables. This

difference between the constancy of universal constants and the conserved quantities can be

stated to be between a global and local constraints on possible world construction, where the

former is global and the latter local.

The invariance of primitive notions such as velocity, acceleration, etc., is more local

than that of momentum, energy, etc., in the sense that a world where momentum is invariant

is a world where velocity, acceleration etc., become variable or locally invariant. Likewise,

in a world where energy is postulated to be invariant, momentum becomes a variable or

only locally invariant. In a world, such as ours, where the speed of light is postulated to be

constant the invariance of mass and energy also become local. Universal constants under this

interpretation become the unique identities of the postulated world.

These relations between local and global invariances indeed suggest a pattern for

reconstructing the development of scientific knowledge. Since all identities, whether of a local

or global kind, can be understood as identity elements of the respective inverse ‘dimensions’,

as suggested above, we propose the possibility of a generativist methodological reconstruction

of scientific ideas. Though we are not attempting any such reconstruction here, we do not

hesitate to envisage the possibility of such a philosophical endeavor. Needless to say, in this

29For a mathematician an equation such as Euler’s (eiπ + 1 = 0) is as good as a fact of the mathematical
world, and therefore can be considered as a scientific statement of special significance. The significance of this
equation however cannot be immediately grasped. Insofar as it is a truth of the pure mathematical world, its
significance, whatever that be, is limited to that domain of inquiry. If it so turns out that the mathematical
world has lot to do with the physical world, such ‘truths’ might be considered the ultimate constraints on
possible world construction.
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visualized possibility it would be inversion that would play the crucial role in systematizing

knowledge.

6.8 Multiplicity of Operations

It has been suggested above that the operations involved in the inverse-definite-

descriptions, though broadly classifiable as either additive or multiplicative, need to be re-

garded as distinct operations. The ampliative nature emerges out of the multiplicity—in the

sense of being many—of the operations. In this section we will provide further justification

for such a multi-operations-view. One part of the argument that is already suggested above

is that each of the operations generate or construct different structures representing different

state-of-affairs.

When the functional relation specified in the definitions is intended to be a gener-

alization of relationship between the dimensions, how could one think of several operations

making up one relation? One might say that this appears quite counterintuitive as well as

unnecessary. In order to make our position appear plausible we will introduce a distinction

between ampliative and non-ampliative operations.

Consider the case of operation on numbers. Given an equation x × y = z, the

operation × is generally considered to take any two numbers, x and y, from a given set

S, and yield a number z belonging to the same set S. It would not be considered a ‘well-

behaved’ operation if it yields a z not belonging to the set S. But what about the cases when

we consider adding or multiplying things other than numbers?

Could we multiply 10 apples with 20 pebbles? Do we get 200 of ‘appebles’? How

about adding 10 apples with 20 pebbles? We get an aggregate of 30 objects that includes both

apples and pebbles. Since we do obtain an aggregate of 30 countable objects, the operation

makes sense. But there seem to be no meaningful product obtainable from multiplying apples

with pebbles. There seems to be some cases where some operations do not make sense. That

is some operations do not generate any meaning, while others do.

Let us take another case. When a line of length 20 meters is added to another of

10 meters, we get a line of length 30 meters. What we get can still be called a line. What

happens when we multiply the two lines? Do we get a line of 200 meters? It depends on the

context. If we are measuring the length of some thing, such as a road, with a tape of length

10 meters, having performed the operation 20 times we compute the length of the road as

200 meters. However, in this case while the 10 stands for the length, the 20 does not stand

for the length, but for the number of times an operation is performed. Whether we measure
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with a tape of 20 meters 10 times, or vice versa we get the same length, and so the operation

of multiplication has some sense in this case.

In another situation, we might multiply apparently the same kind of values, but we

would report that the result is 200 square meters. Here also it makes sense because we are

measuring the area of a surface. Are we performing the same operation in both the cases?

Definitely not. In the former case, though we are using the multiplication table, actually

what we are doing is nothing but addition, as many times as the operation is repeated. This

is a trivial application of multiplication. In the latter case, however, we are engaged in a

non-trivial operation. The result is no longer a length, but area. We will call such non-trivial

operations ampliative operations. Insofar as 10 and 20 are numbers, and 200 also a number,

our operation continues to be of an arithmetical kind. But when the numbers represent

magnitudes of certain dimensions, they cease to be mere numbers. One might suppose that

this is in no sense a startling fact that needs to be talked about in a doctoral dissertation.

The non-trivial matter is the epistemological significance of the amplification involved in the

process. When we start talking about area as a function of the sides of a rectangle, we have

not made any inductive generalization, rather we have constructed (defined) a concept. This

concept of area can also be identified in terms of inverse-definite-descriptions.30

In certain situations we may have to follow a different procedure of addition. Spe-

cially when we are operating with a vector magnitude, such as displacement. Here the

direction of displacement along with the magnitude matter. Thus vector addition is another

operation that follows a different, but definite logic.

Though it is possible in a higher order theory to have a very general definition for

obtaining the areas of any shape, the manner in which we make sense of that higher order

operations follows a definite path of generative history. A large number of differentiable

operations, each with a specifiable and non-trivial meaning have entered into that process

of obtaining a general theory of space. That the general theory is not just a single concept

becomes clearer to us when we begin applying the ‘global’ formula to generate ‘local’ formulae.

Possession of a general formula is not a sufficient condition for the mathematician’s ability

to solve a specific problem. His abilities depend on how good he is in generating the specific

formula for the specific purpose. Generalizability of a large class of operations conceals the

fact that insofar as they are general such theories remain ‘deaf-and-dumb’. The context

of learning as well as the context of application can demonstrate the amplifiability of such

30Piaget’s investigations on the development of concepts such as ‘length’ ‘area’ ‘volume’ etc., as disussed in
The Child’s Conception of Geometry 1960, demonstrate that the nature of the operations involved in learning
each of the above mentioned concepts are independently closed under distinct group of operations. Invertibility
(reversibility) of the operations is one of the necessary conditions of acquiring these concepts.
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general theories.

We therefore think that there are as many operations as there are different contexts

of application. Every operation cannot be thought of being applicable to every situation

promiscuously.31 In this connection Karl Popper’s views are supportive of our standpoint.

He is of the opinion that the arithmetic of natural or real numbers is helpful in describing

certain kinds of facts, but not other kinds.

[W]e may note that the calculus of natural numbers is used in order to count
billiard balls, or pennies, or crocodiles, while the calculus of real numbers pro-
vides a framework for measurement of continuous magnitudes such as geometrical
distances or velocities. . . . We should not say that we have, for instance, 3.6, or π,
crocodiles in our zoo. In order to count crocodiles, we make use of the calculus of
natural numbers. But in order to determine the latitude of our zoo, or its distance
from Greenwich, we may have to make use of π. The belief that any one of the
calculi of arithmetic is applicable to any reality . . . is therefore hardly tenable.32

He is arguing there that each calculus should be viewed as a distinct semantical system.

Since each calculus presupposes certain kind of operation/s, we may say that each semantical

system differs from the other on the basis of what kind of operations are constitutive of the

systems.

Popper argues that a proposition such as ‘2 + 2 = 4’ can be thought of in two

different senses. One of them is to consider it as a logical truth. In the second sense it

may be taken to mean a physical manipulation (operation), such as, say, counting apples or

pebbles. In the second sense the universality of the proposition becomes doubtful. Popper’s

examples are interesting and very useful, for they bring home several points that we are

presently pursuing.

[I]f you wonder what a world would look like in which ‘2+2 = 4’ is not applicable,
it is easy to satisfy your curiosity. A Couple of rabbits of different sexes or a few
drops of water may serve as a model for such a world. If you answer that these
examples are not fair because something has happened to the rabbits and to the
drops, and because the equation ‘2+2 = 4 only applies to objects to which nothing
happens, then my answer is that, if you interpret it in this way, then it does not
hold for ‘reality’ (for in ‘reality’ something happens all the time) but only for an
abstract world of distinct objects in which nothing happens.33

Two contexts become demarcated here. One is a context where nothing happens, and the

other is a context where something happens. We think that the ‘operation’ that happens

31This thesis can be viewed as opposing Quine’s famous thesis on natural kinds.
32Karl Popper 1962, Conjectures and Refutations, p. 211.
33Ibid, p. 212. Note that here the term ‘model’ is used to refer to an example of a world (possible). We would

prefer ‘model’ for the possible world, and ‘system’ for the actual world where we find the model instantiated.
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when rabbits or drops meet cannot be captured by the ‘poor’ sense of the operations supplied

by arithmetic. Arithmetical operations do not have generative potential in the non-trivial

sense. In order to bring out the qualitative differences between various operations in various

contexts, we need to differentiate each such operation by a proper methodological procedure.

We think that the above method of constructing inverse-definite-descriptions could bring it

out. Since every operation has an identity, which can be uniquely described by the inverse-

pairs, we could talk about the semantic differences that exist in the various operations that

are possible in the ‘rich reality’.

Another very crucial point is with regard to what Popper says about the transfor-

mation of semantical systems into scientific theories. He says that

in so far as a calculus is applied to reality, it loses the character of a logical calculus
and becomes a descriptive theory, which may be empirically refutable; and in so
far as it is treated as irrefutable, i.e. as a system of logically true formulae, rather
than a descriptive scientific theory, it is not applied to reality.34

This passage serves us a double purpose. First, it brings out the point that a semantical

system gets transformed into a descriptive refutable and empirical scientific theory when

applied to reality. Since a semantical system is irrefutable, it is neither true nor false—it

is immune to refutations. Second, it clarifies Popper’s notion of scientific theory: it is an

application of a semantical system to reality. For him nothing is a scientific theory if it

has no potential application. For us nothing is a scientific concept if it has no potential

application and nothing is a scientific assertion if is not a statement applying a scientific

concept. The nature of the difference is that Popper demarcates statements into scientific

or not on the basis of falsifiability, while we are suggesting a demarcation of concepts into

scientific or not on the basis of whether a concept specifies an invariant identity expressible in

terms of inverse-definite-descriptions or not. In consequence we would pass semantic systems

as legitimate objects of scientific knowledge because it is sufficient for them to have potential

application. Growth in the number of distinguishable semantic systems is already a partial

growth in scientific knowledge.

Lorentz is indeed a scientist, for he did construct a meaningful semantic system.

Einstein is also a scientist, for he found a truthful application for the meaningful semantic

system that Lorentz invented. Should we say, Einstein discovered and Lorentz invented?

Sometimes it is less confusing if we do differentiate the activities of different scientists by

different terms. We would say that both activities have epistemological relevance, unlike

34Ibid , p. 210.
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Popper, who found greater relevance in Einstein’s activity. Since the construction of seman-

tic systems are based on a knowledge of proportionalities that are available from either direct

or experimental knowledge, empirical constraints necessarily enter in the process of gener-

ating models. Thus though there is an element of theoretical (mental) construction in the

generation of semantic systems, it is constrained by relations that obtain in ‘reality’. There-

fore, none of the structures thus formed can be devoid of empirical content, and in most cases

unanticipated counter-inductive knowledge gets generated. Einstein’s relativity theory is a

good example of a non-inductive, inversion based construction, which surprised many due to

its distance from ordinary understanding.

6.9 Inversion and Symmetry

Symmetry is one of the most sought after features in the pursuit of knowledge, even

more so in modern science. The notions of symmetry and truth have come closer than ever in

recent days as the emphasis on constructive thinking is increasing in all the departments of

science. The situations where we seek explanations turn out to be those that are asymmetrical

in relation to a certain structure, though this realization is mostly retrospectively obtained. In

the pursuit of finding explanations, we tend to posit (create) certain relevant inverses which

bring in the sought after closure. Such a closure appears almost always to be that which

fulfills symmetry. Once symmetry is found we seem to be reaching a climax or culmination,

and we often stop further probe—at least temporarily—for along with it arrives a sense of

fulfillment and achievement. An immediate and important question comes to mind as soon

as we make the statement that the objective of scientific endeavor is symmetry: What is

the relation between truth and symmetry? Since, symmetry is not truth, and since truth

is largely believed to be the objective of scientific knowledge, the relation between these

variously stated objectives needs to be understood. This however remains a riddle, and—as

van Fraassen states—this is the epistemological question par excellence insofar as scientific

knowledge is concerned. We are not going to pursue further this question in the present

thesis, for that would take us far afield. Presupposing that scientists are indeed involved in

the pursuit of symmetry, we will discuss the problem of generating symmetrical structures in

what follows.

Symmetry is usually defined as an operation, or an action or a transformation of a

structure that does not alter the value of a certain measurable parameter of the structure.35

The family of transformations that do not alter one of the parameters is called a group. A

35Feynman 1965, The Character of Scientific Law, p. 84-85.
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group structure is necessarily symmetrical, and is defined in terms of closure, associativity,

identity, and inverse elements of an operation (See §A).

Bas van Fraassen perceives the sort of theories and models that scientists construct

as a result of the pursuit of symmetry.36 Most arguments in the context of theorizing, accord-

ing to him, are a priori symmetry arguments. If theorizing is based on a priori arguments

then the question would naturally arise; what role remains for empirical means in the context

of theorizing? Van Fraassen thinks that the a priori appearance must be deceptive because

nothing contingent can be deduced by logic alone. However, he thinks that there is an “ar-

gumentative technique” based on two forms of “meta-principles”: (a) “structurally similar

problems must receive correspondingly similar solutions”; and (b) “an asymmetry can only

come from a preceding asymmetry”.37 Van Fraassen’s complete statement of the symmetry

argument is as follows:

In a symmetry argument one proceeds as follows: a problem is stated, and we
first endeavor to isolate the essential features of the problem situation—that is,
the features relevant to the solution. This does not necessarily call for great
insight: the precise statement of the problem generally specifies what is intended.
. . . Isolating the essential or relevant structure is equivalent to defining the set
of transformations that leave the problem essentially the same. These transfor-
mations are the symmetries of the problem. Only with these at least implicitly
specified can we insist: problems which are essentially the same must have essen-
tially the same solution. This is the great Symmetry Requirement, the principle
of methodology that generates symmetry arguments. To put it somewhat differ-
ently: once the relevant parameters are isolated, the solution must consist in a
rule (i.e. function) that depends on those parameters alone.38

The dependency of a rule on a parameter means that if the problem is transformed by one

of the admissible transformations, i.e. by a symmetry, and the rule is applied to the result,

then if the rule gives the same answer as when applied to the original, the rule can be

said to be dependent on the chosen parameters.39 These specifications are sufficiently clear

for understanding the possible role of symmetry argument in appraising the solution of a

problem. We however think that the crux of the matter of discovery consists in the isolation

of the relevant parameters. Van Fraassen thinks that this “does not necessarily call for great

insight” because “the precise statement of the problem generally specifies what is intended.”

Isn’t this question begging? If this were the case, the crux of the matter consists in the proper
36Op.cit. p. 232.
37Ibid p. 233. Compare it with what Herman Weyl says more or less the same matter in the traditional lan-

guage of cause and effect: “If the conditions which uniquely determine their effect possess certain symmetries,
then the effect will exhibit the same symmetry.” H. Weyl 1952, Symmetry , p. 125.

38Ibid, pp. 258–259. Boldface is ours.
39Ibid, p. 259.
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formulation of the problem. Is it then the case that symmetry enters into the scene only after

the formulation of the problem? Has it no role in the very formulation of the problem? If

so van Fraassen’s proposed role of symmetry in the context of solving a problem becomes a

second level proof of the invariance of the differently obtainable structures that are already

available to begin with.

If we are correct in our understanding of his proposal, then the conceived role of

symmetry here can be stated to be in the context of appraising by proving the equivalence

of the already available structures that were obtained by different means rather than in the

original construction of symmetric structure. We are not stating that this second step is not

essential. Indeed it becomes one of the conditions of acceptability. This certainly forms part

of the process that provides epistemological warrant. But, how much is its relevance in the

context of generation of the original idea (structure)? The crux of the matter, with respect

to the generation of the original idea, does not appear to be like a case of finding equivalence

of different approaches of solving a problem. Note that both the meta-principles (a) and

(b), stated above, work by realizing the differences or similarities among structures that are

somehow given. If this is the proper understanding of what is intended in van Fraassen’s

suggestion, the fundamental question remains unanswered, which is to know what makes

us initially conceive the structure, i.e. identify the relevant parameters in a given problem

situation such that its invariance with other structures can later be worked out. This forms

the first level of the problem of discovery. In other words, as stated in the previous chapter,

this is nothing but the problem of the original conception of physical systems, while van

Fraassen’s proposal seems to properly belong to the next level of constructing theories, which

is from physical systems to models. We claim therefore that van Fraassen’s proposal takes

care of the second level of the problem. However the applicability of the symmetry argument

in this level appears to be a consequence of the inverse reasoning that plays its role in the

first level of the problem. Our thesis proposal then can be understood as furthering the

approach well conceived by van Fraassen, and Hermann Weyl, Wigner etc. We will claim

that since inversion is a logical condition of symmetry, inverse reasoning makes construction

of not only symmetrical models, but also physical systems possible.

Symmetry is undoubtedly a property of structures, though not all structures are

symmetrical. Some structures that are symmetrical are so because they have in them a

symmetry making relation. A structure is symmetrical iff the relation that makes the structure

is a symmetrical relation. Structures that are not symmetrical are so because they do not

contain a relation that is symmetrical. All these statements might appear trivial, but their
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significance consists in delimiting our search for symmetry making properties. If the problem

is to discover symmetry, then we should look for the factors responsible for symmetry, which

in turn will be responsible for the formation of structures such as scientific models. Our

natural choice is inversion. We postulate inversion as the basal relation that yields all the

symmetrical structures, such as physical systems, functional definitions, models, etc.

What van Fraassen said about the need of the symmetry requirement is a better way

of putting what is well known in terms of obtaining relevant initial conditions. According to

Wigner, scientific knowledge of anything is possible only if the possibility of isolating initial

conditions in many cases of the phenomena, and also the possibility of obtaining the same

essential initial conditions, no matter where and when we realize these.40 Thus obtaining

initial conditions in many cases and realizing their equivalence or “sameness” is the condition

of proper scientific knowledge.

The often cited example is that of mechanics, where the position and the momentum

of a particle become the initial conditions, but it is never necessary to have the absolute

position and the absolute time as initial conditions for the scientific study of the dynamics of

the particle. Scientific knowledge therefore has its roots in the method of relativizing. In other

words we may say that science begins only when relativized parameters of a phenomena could

be obtained. Though this might look as a limitation of scientific knowledge—for we can always

make only relativized judgements, it must however be seen as a break-through or wayout of the

fact that it is impossible to know absolutely about any object that is becoming. Relativizing

is therefore the heart of the matter of science. And obtaining invariance is same thing as

obtaining a symmetry. And obtaining a symmetry is equivalent to obtaining a principle

of conservation. The connection between the principles of conservation and symmetries in

nature have been demonstrated by Emmy Noether. Noether’s famous theorem can be stated

as follows: where ever there is a symmetry in nature, there is also a principle of conservation,

and vice versa. Thus the interconnection between these notions is well established, and need

no further argument.41 However, understanding the fundamental significance of these ‘values’

and the factors that make them possible requires more investigation. In this regard we will

discuss in the next section the relation between relativity and objectivity.

40Wigner, E. Symmetry and Reflections, pp. 3-4.
41Cf. Wigner’s Symmetry and Reflections, Feynman The Character of the Physical Law , Herman Weyl’s

Symmetry , and van Fraassen’s Laws and Symmetry specially Ch.11, contain a clear and informal expression
of the equivalences stated above.
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6.10 Relativity, Measurement and Inversion

In common usage the term ‘relativity’ is used to express: “Well, it depends on how

we look at it”. Therefore hearing the term ‘relativity’ invokes a kind of uncertainty among

common people. But in science obtaining a relativity principle actually means that a scientist

has discovered a means of saying confidently: “It hardly matters whichever way we look at

it.” Discovering such a description is the goal of scientific activity. Obtaining a relativity

principle is same thing as obtaining an invariant manner of description. Thus the ‘common

man’s’ usage of the term ‘relativity’ is clearly different from the scientist’s use of the term.

It is also necessary to note that the absence of an absolute description does not

mean lack of objectivity. The opposite of ‘relative’ is after all ‘absolute’, and not ‘objective’.

Learned readers might get impatient of these simple clarifications. But unfortunately, it is

usual to confuse relativity with subjectivity not only among common people, but also among

the learned. There is no harm repeating it here. However there exists a nontrivial matter that

demands attention from philosophers of science, which is to unravel the connection between

relativity and objectivity. Let us elaborate the problem.

When scientists say “It hardly matters which way we look at it.” they mean

“whichever way we measure it”. So measurement is the means of a scientist’s seeing. In

fact it is only in the nature of measurement the connection between relativity and objectivity

can be obtained. The beginning of measurement is an arbitrary choice of a standard or scale,

or a ‘yardstick’, but it is necessary that the standard of measurement be external to the

subject. In other words it is extra-phenomenological. It is in this arbitrary beginning as well

as in the external standard that the essence of the matter lies.

In order to see that measurement is extra-phenomenological or extra-subjective it is

necessary to first take up the problem: What makes measurement possible? In the following

account our attempt will be to locate the moment where inversion enters in a significant and

necessary manner in the making of scientific knowledge.

There is a sense in which we can say that each sense organ can be seen as an ‘instru-

ment’ of classifying things around in the world of experience. Let us also presuppose that the

use of classification is the same as conceptualization. Through the sensory ‘instrument’ of the

eye we can classify things on the basis of their color, brightness etc. Similarly auditory, olfac-

tory, gustatory, and tactile organs can do the same on the basis of their respective capacities.

If we suppose that each organ does it on the basis of one perceivable aspect of the things

around, is it possible to obtain knowledge on the basis of these instruments? If each of them

independently classifies the things around, then the answer is no. Nothing can be identified
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unless two or more independent aspects of an object are linked. In the language of classes,

this amounts to saying that it is necessary to obtain an intersection of classes to identify

one or more objects as belonging to some kind. This also will be presupposed as a fairly

well known condition of identification. Obtaining an intersection of the classes here means

obtaining a synthesis or correlation between the outcome of different sensory ‘instruments’.

Since the correlation is understood to be made by another higher level ‘instrument’ (call it

mind or subject), the knowledge thus obtained is subjective.

Here enters Hume, who posed the well known problem of induction. His interpre-

tation of the synthesis or correlations, which we supposed as the necessary conditions of

knowledge, is that it is a psychological process of constant conjunction. Since induction—the

popular name for this process—can not provide any logical certainty, scientific knowledge—

which was held to be based on inductive generalizations by his predecessors (Bacon, Newton,

Locke etc.)—was gradually seen to be essentially non-inductive, without however totally deny-

ing the empirical nature of natural science. To the extent that it is empirical it is regarded

also as psychological or subjective, as if empirical basis means the same thing as psychological

or subjective basis. Karl Popper’s denial of an epistemology of the sources of knowledge is

based more or less on this identification: inductive = psychological = subjective. We think

that this original attempt to base science entirely upon the inductive method was a mistaken

approach.

Fortunately induction is not the sole means of obtaining empirical knowledge. There

exists a nonpsychological, extra-subjective method of knowing the world around. Before we

elaborate it, let us make another useful observation.

Since in the above mentioned manner of making knowledge the standard of sim-

ilarity is internal or private to the subject, another problem of rooting knowledge in the

inner faculties of a subject emerges. Here enters Wittgenstein’s private language argument—

another serious threat to empiricism based on sense impressions. Wittgenstein’s way-out is

to base knowledge on publicly available standards. He states in that connection that nothing

is a criterion if it is not external—an attempt to link the very idea of criterion with its being

external to the subject.

Scientific knowledge is based on the very possibility of external (extra-subjective)

and inter-subjective standards or criteria. Scientific practice has found ways of transcending

the limits of subjectivity by rooting the practice in a method which transforms arbitrariness

into invariance. The very idea behind the scientist’s tendency to measure things can be

interpreted as a tendency to transform arbitrariness into invariance. To measure then is
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to transform arbitrariness into invariance. We propose that measurement, in this sense, is

impossible if it is based on any subjective standard. We present the following case as an

argument to support this.

Consider that we have an ordered class of things on the basis of relative hardness.

While obtaining such an order, let us suppose that we have employed only our subjective

standards of evaluation, such as pressing, scratching, hitting etc. By employing in the process

nails, knives, diamonds etc., we can get a fineness in the gradation of things. Though we are

using tools in the process of this ordering we have not so far made any measurement in the

strict sense of the term. On the basis of such an order we can say that this is harder than the

other, or conversely, the other thing is less hard than this. Since the same order is also the

order of softness, though in the inverse order, we can make equivalent descriptions employing

the order of softness. This inverse order between the opposites is very trivial in relation to

the nontrivial inverse order that we will shortly state below.

Whatever be the fineness of the order obtained, we are still making qualitative

descriptions. One might say that since we have a linear order of things which can be mapped

to numbers, we can go quantitative by talking in terms of numbers. Merely using numbers

does not make our judgements quantitative, again in the strict sense of the term. This use

of numbers is trivial. And we will see below that nontrivial use of numbers enters only after

the externalization of standards of measurement, and making use of numbers to express the

measure of proportionality.

Just as we could obtain the above kind of order of things on the basis of hard-

ness/softness, it is possible to obtain other orders of things on the basis of big/small (size or

volume), heavy/light (weight), etc. Here again while obtaining the relative grading nothing

more than qualitative order can be obtained. Though the next level of ordering continues to

be qualitative, we can work out correlations between one order and another. For example, a

direct correlation between hardness and weight: the greater the weight, the greater the hard-

ness or vice versa. In terms of volume and weight: the greater the volume the greater the

weight. However soon we realize that these inductive generalizations are not precise enough.

They can be protected by introducing precision as follows: The greater the volume of a spe-

cific kind of substance, the greater will be the weight of that substance. This specification of

the identity of the third element is very important whenever we make relative judgements.

Without this specification no relational statement can be said to be either true or false. In

other words, the specification of both subject and predicate is essential to make an assertion.

More importantly, this specification helps us to understand things in a much better
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manner. This happens when we realize that the same volume of different things do not possess

the same weight. Let us remind the reader that the notion of ‘sameness’ that we are talking

about is still a subjective judgement. A hard thing of the same weight will possess less volume

than a soft thing of the same weight. We have a better way of stating this condition: the

harder the substance lesser the volume, if the weight of the substance is kept constant. This

inverse order between hardness and volume unlike the above mentioned inverse order is not a

trivial one. It is nontrivial because the opposition stated here is not logically obtainable, but

can only be obtained empirically and experimentally. Experimentation is involved because

these statements are realized by controlling (keeping something constant) one of the aspects

under study. All this is possible in a qualitative study of the matter.

What is lacking so far is the externalizing the standards of measurement. Though

everyone of us are capable of making relative judgements of whatever significance, serious

problems of inexactitude remain if we do not have extra-subjective standards. What appears

hard to an academician’s hand, may not appear hard to the tough hand of a worker in a farm,

though to a large extent both of them would agree on the relative judgements. The strength

of relative judgements, as against absolute judgements, lies precisely here. One may disagree

that something is hard, but it is difficult to disagree, unless on factual grounds, when some

one makes the statement “This is harder than the other”. Though relative judgements are

better than the absolute ones, in order that the judgements become acceptable to manifold

of situations, we need to transform the relative judgements into proportional quantitative

judgements.

Unless we embark on an arbitrary scale or yardstick or unit or standard that is exter-

nal and not internal to the subject, making an invariant proportional quantitative judgement

is impossible. What do we mean by ‘external’ and ‘internal’? We mean by ‘internal’ any

object that is accessible only to the subject.42 Take for example the possibility of comparing

the heaviness of two objects by keeping one each in each of the hands—hands becoming the

pans of the subjective balance. The heaviness/lightness of the object is an internal experi-

ence based on the ‘shift’ produced by an ‘internal indicator’. Though all of us may have the

capability to have similar experience, for whatever biological reasons, nothing more than a

qualitative judgement is possible however good be the resolving power of this internal ‘in-

42We are aware of the philosophical problems of asserting in definite terms whether any sensations or
thoughts have privileged access only to the subject, specially Wittgenstein’s private language argument, which
denies the possibility of such access. Nothing can be regarded a thought or a sensation if it does not have
an identity of its own. It is therefore possible to defend a position that there cannot be any thoughts which
are necessarily private, and all thoughts are potentially public. Since we can’t engage in the details of this
argument we will presuppose the possibility of private, but potentially public thoughts and sensations.
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strument’. On the other hand when an external instrument that shows differential functional

behavior to a given input, the standard of the judgement is publicly accessible.

One might say that even in this case the indicator has to be observed by the subject,

and therefore ultimately it is the judgement based on our internal instrument. The power

of an external standard of measurement lies precisely in making the vagaries of the internal

experience irrelevant to the final judgement. Consider that a person has a curved impression

of all straight things. Will his observations be invalid for making measurements? Certainly

not. Because when he measures he measures proportions which are invariant of subjective

impressions. All that we need for comparison is consistency in experiencing impressions.

Though all of us actually have inverted images of the outside objects on our retina we make no

mistake in judging our images, for in a relational perception what is important is consistency

in difference. Even if one person among us is unlike the rest of us in having upright images on

his retina, neither would he have any problem in his vision nor would we have any problem

with him, because it is impossible for any of us to even detect this. All that is needed is

consistent differentiating behavior. In a relational judgement the notion of identity that is

involved is Leibniz’s notion of identity of indiscernibles.

The act of measurement is a relational observation with a difference. The differ-

ence, as already mentioned, is that unlike personalized relational statements the relational

statements of measurement are based on an external standard or yardstick. The nature of

the difference is that the object measured as well as the criterion of measurement are outside,

whereas in a personalized relational statement, the object may be outside, but the yardstick

is inside. The differential functional behavior that our sense organs can exhibit, however

sensitive they may be, can never break this subjective limitation.43 The only way-out is to

embark on the differential functional behavior of the measuring instruments whose ‘mind’ is

transparent to all of us.

An analogy with language may not be out of place. The need of an external arbitrary

symbols in language based communication play the same role in making such an act possible.

In order that communication between different subjects is possible it is necessary to have an

external symbol. Just as language helps us to break the circle of responding to the external

world in an internalized manner, the act of measurement with external instruments help us to

break the circle of internal relativized judgements. Just as the symbol and the object for which

it stands are both outside the person, the yardstick and the object to be measured are both

43Though we are not going to pursue this here, we are arguing against gradualism of Quine, who argues
that scientific knowledge and commonsense knowledge are different only in terms of degree. We are suggesting
against his thesis that from common notion of kinds to natural kinds (or scientific kinds) there is a qualitative
break, and so the difference is not merely a matter of degree. Cf. Quine’s “Natural Kinds”.
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outside the person. We conclude therefore that external standard is a necessary condition of

quantitative measurement—invariant proportional relation often stated as a ratio.

Another necessary condition of the measuring process is the presence of a counteract-

ing or inverting ‘ability’ within the instrument used for measurement. Since the components

of a measuring instrument must have some functional relation with the parameters that are

to be measured, the question arises, what kind of functional relationship is necessary? We

claim that without the involvement of an inverse relationship no measurement is possible.

Let us illustrate this in the case of measuring weights using a spring balance. Why

do we need a spring balance for measuring weight? Our direct answer is that because the

tension in built in the spring opposes the weight of the body, and that it does it according

to a functional relation. The stretchability of the spring is inversely related to the tension of

the spring: the greater the tension the lesser the stretching given a constant weight, and the

greater the weight the greater the stretching given the tension is constant. Thus the extent

of stretching becomes an index of the weight of the body. Of course, uniform calibration of

the instruments is necessary for making something a standard of measurement.

Is it not possible to measure a quantity if it has only a direct proportionality with

another quantity? Isn’t it the case that the temperature of a body is directly proportional

to the expansion or increase of the mercury column? Is there any counter expansion force

in mercury? The cohesion of the ‘particles’ of the liquid metal happens to be such a force.

The importance of the opposing ‘force’ can be made clearer by simply pointing out the fact

that the spring balance requires to be hooked on to some static thing such as a stand. It is

impossible to measure if the spring balance also moves with the weight. The only reason we

need to fix it is to allow the counter force act which is in built in the spring. In the case of a

thermometer it is required to contain the liquid metal inside a closed container for the same

reason.

In the case of a proper balance used for measuring mass, the counter forces are

visible, and does not require any interpretation. We will see in detail in the case studies how

Galileo solved the problem of motion by constructing the counter balancing forces by inverse

reason. We conclude therefore by stating that it is necessary for every measuring instrument

to have an in built counterbalancing ‘ability’.

We will now extend this condition of counterbalancing as a necessary condition of

the very constitution of a sense organ, and then further explicate the point made above that

measurement involves externalizing the standard of measurement. We are not going to dwell

in detail on the physiology or biology of perception. We will confine ourselves in explicating
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the necessary structure that both a sense organ and a measuring instrument must have.

We shall first explicate the functional structure of the spring balance as a model

of a measuring instrument. Let us call the unstretched condition of the spring the normal

state, and the stretched condition be called denormalized state, and the process be called

denormalization. Upon the removal of the weight the spring reverts back to the normal state,

and this process be called renormalization. The two opposite processes make the instrument

a system capable of functioning for the purpose of measurement. Nothing can be a measuring

instrument unless it has an in built tendency or capacity to get back to the normal state.

A basic understanding of the neurophysiology suggests that the physiological (struc-

tural and functional) form of sense organs or neurons—our internal ‘instruments’ that make

perception possible—have an analogous structure. We shall illustrate it in the general pattern

of the physiology of transmission of nerve impulses.

The membrane of a nerve (neurolemma) when at rest, is in a state of electrical po-

larization called the state of resting potential. When a nerve is excited, due to some cause of

excitation such as light, sound etc., the polarized state of the resting potential gets disturbed

to another state called depolarization transforming the resting potential into action potential,

which then becomes a signal that gets transmitted from one location of the membrane to an-

other. The action potential generated at one location causes depolarization in the successive

location. Soon after depolarization, the process of repolarization starts reverting the surface

of the membrane back to the original polarized state. And this continues in a succession by

repeated ‘cycles’ of the opposite processes—depolarization and repolarization. The analogy

with the functional model of a measuring instrument is clear: normalization is analogous to

polarization, depolarization to denormalization, and renormalization to repolarization. The

difference in the examples illustrated is that measuring instrument is static, while the neuron

is dynamic. This kind of model can be generally referred to as equilibrium models, whether

static or dynamic. In fact the difference between a sense organ and a neuron, in terms of the

physiological model, can be stated to be the difference between static and dynamic equilib-

rium. Therefore, the functional pattern of a sense organ makes a perfect analogy with the

functional pattern of a measuring instrument, with of course the above stated difference that

the measuring instrument is external to the subject.

What emerges out of this account is that the structural pattern based on polarization

or opposition is an essential aspect of structures capable of perception as well as measurement.

This also becomes an illustration of the nature of inverse systematization. Nothing is a system

of significance unless the ‘opposites’ form an integral part of it. It is worthwhile repeating
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the point made above that there exists no contradiction in holding the opposites together

in a single system, either as a conceptual system or as a physical system, at the same time.

Unlike the opposition based on negation that forms the basis of a system of statements, this

species of opposition has the character of cementing the opposites.

If it is correct to say that measuring instruments are ‘sensitive’ systems that are

external to the subject, then we have an access to some other ‘sensitive’ systems other than

our sense organs to ‘experience’ the world for us. Since measuring instruments respond

specifically to certain external phenomena according to a definite functional relation, and

since it is possible to obtain statements expressing proportions which are invariant with

respect to a group of transformations (operations), and since such an invariance does not

depend on the vagaries of subjective perceptions, the knowledge we get through measuring

instruments is objective. Since relativity in science is connected to the notion of invariance

in the sense explicated above, objectivity and relativity are necessarily connected notions.

If we are correct in stating that scientific way of understanding the world is by the

method of constructing or synthesizing systems through which we can arrive at objective

invariant proportions or ratios, then it would be appropriate to say that the rationality of

science consists in this RATIOnality which is based on inversion and not the rationality based

on deductive systematization which in turn is based on negation.

6.11 Inversion and Equilibrium

Just as symmetry is logically connected to inversion, equilibrium44 is also connected

to it in the similar manner, in the sense that equilibrium is inconceivable without inversion.

Most models that scientists have constructed are either models based on symmetry or on

equilibrium. An equilibrium system is a result of composing additive inverses.45 In the

context of generating scientific knowledge we claim that a study of conditions that produce

equilibrium structures must be taken seriously.

We have noted in §5.2 page 131 that there are two epistemologically distinct stages

in the process of theorization, one stage is the transition from phenomena to physical systems

and the second stage is the transition from the physical system to the higher postulates and

models. We claim that the first stage is often accomplished if a system of equilibrium is

44We are using equilibrium in a more general sense including steady-state, stability, balance, dynamic and
static equilibria, homeostasis, etc.

45We think that there seems to be some plausibility is the idea that equilibrium and symmetry are logically
distinct, and their distinction could be as sharp as the distinction between additive and multiplicative inverses.
Establishing this demands a separate study.
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realized in the problem context. We take encouragement from the history of science. The

sciences developed by Archimedes, statics, hydrostatics, and mechanics are based on the

principles of equilibrium; Galileo solved the riddle of motion by the application of a model of

balance; Newton’s first law (the law of inertia) and the third law (that action and reaction

are equal and opposite) are principles resembling the principles of equilibrium. Various

other cases can be listed: the method of balancing chemical equations; both equilibrium

and nonequilibrium thermodynamics; reversible and irreversible systems; chemical kinetics;

various systems maintaining homeostasis in biology; models of speciation based on population

genetics; ecology; the study of dynamical systems; the entire discipline of control theory;

major methodological schools such as systems theory, cybernetics etc., are all various fields

of inquiry where the notion of equilibrium has played a vital role, specially in the initial

stages of development. It must be possible to reconstruct the genesis and development of

these disciplines based on the idea of inversion, because inversion is a necessary condition of

equilibrium.

Since equilibrium is a state where the additive inverses coexist, it is a system con-

structible on the basis of the principle of included extremes. In the case studies we have

presented an initial attempt of reconstructing some of the early stages in the development of

scientific knowledge where equilibrium is involved. Appendix B (B page 321) includes the case

of Population Genetics where the use of equilibrium model helped in the mathematization of

a biological system.

One of the problems then of a generativist is to formulate the conditions necessary

for constructing structures which have either the property of equilibrium or symmetry. In

this thesis we are not pursuing the problem of constructing symmetric structures, which is

highly relevant especially when one is considering the problem of building highly abstract

mathematical models. We will spare the rest of the space in this work for equilibrium, which,

as already proposed, has a crucial role to play in the initial stage of transforming phenomena

into physical systems.
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Part III

Case Studies





Chapter 7

Genesis of Scientific Knowledge

When and where did science take birth? Is this at all a legitimate question? Science

is not among those things that come and go, but it is that thread-like thing that is woven

by people who come and go; it is a public object that is used and developed by a large

community. Access to it is through language, some might say science is nothing more than

a specialized language. We can not possibly ‘feel’ the entire body of science. What we can

however experience are certain ideas represented through symbols. So the body of science at

any given point of time can be identified with a group of interconnected ideas. Hence our talk

of science and its genesis has to be that of the genesis of ideas that have somehow become

inalienable parts of science.

Some of the ideas that cannot be separated from science are the ideas of conservation,

analysis and synthesis, the search for causes and underlying order, equilibrium, symmetry

etc. It is very difficult to ascertain when the seeds are sown and at what place. It might very

well be the case that they are given a priori . We shall not be engaging ourselves in these

matters as they would take us far afield. What we shall attempt is to present interconnections

between the ideas in a manner that would project the role of the logical relation, inversion,

and then reveal its foundational character in the context.

Our natural starting point is around the 7th c B.C. in and in and around Greece.

Whatever be the actual origin of science and its method, we have evidence at least to the

effect that the intellectual soil of ancient Greece and Rome was undoubtedly fertile enough

to provide foundations to the edifice called science. What these foundations are can best be

known by grasping some of the presuppositions current in their times, because the foundations

of any intellectual tradition, we think, consists in certain fundamental ideas that cannot be

questioned; for they are not beliefs that are made but presuppositions that aid in making
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beliefs. These are, we claim, in the form of certain thematic-pairs (pre-suppository idea-

pairs).1 Philosophical speculation, among most philosophical schools, including ancient Greek

thought, is rich in thematic-pairs. For example persistence and change (Being and Becoming),

one and many, heavenly and mundane, beautiful and ugly, just and unjust, real and apparent,

analysis and synthesis, etc. These thematic-pairs by being an inseparable part of the tradition,

function as regulatory constraints, controlling the thinking patterns of a tradition.

A few words about our motivation in tracing the roots of science in those ancient

times as far back as the 7th c. B.C. are in order. The motivation is two fold. First, as already

mentioned, it is to understand the foundational presuppositions of science; the second is to

denounce a prevailing and highly influential view of the present century that metaphysics and

science are to be distinguished as fundamentally different forms of inquiry about the world.

The positivists’ program to eliminate metaphysics from science, is well known and requires no

elaboration.2 It is important to keep this at the back of our mind while studying the roots of

science in what is otherwise regarded by some as non-science. While no one would deny that

some ideas of metaphysical speculation could have influenced the development of scientific

thinking, it would be unpalatable to a large number of thinkers if one were to say that the

foundational structure of science and metaphysics is essentially the same. In this connection

it may be appropriate to quote Wartofsky’s observation on the relationship between science

and metaphysics.

Contemporary science still operates within the conceptual frameworks of matter
and form, of structure and function, of laws of change and development. Like
the Greeks, we postulate theoretical entities to explain the phenomena, and like
theirs, our science has a deep sense of the underlying mathematical structures of
the physical world. Like them, too, we are not satisfied merely to acknowledge
these pervasive deep structures of our thought, but are prone to assess them crit-
ically, to pursue that rational analysis of what we mean and what we understand,
which is the true and broad sense of philosophy. But also like the Greeks, we are
even in the flush of our rationality haunted by the irrational, by the mysterious
and the unfathomable. Their supreme intellectual vitality saw this as a challenge
to reason, not as an invitation to despair. This makes them vividly contemporary,
for although our science has far outstripped theirs in the content of our theoret-
ical understanding and in the scope of our control over nature, it is profoundly
continuous with theirs.3

While we accept a degree of difference in terms of specificity, metaphysics and science cannot
1The expression “thematic-pair” is a modified adaptation from Gerald Holton’s expression “thema anti-

thema pair”.
2Metaphysics was dismissed as nonsensical by the positivists such as Carnap and Ayer. Though Popper

didn’t agree on this point, he suggested that metaphysics is meaningful, but unfalsifiable and therefore not
scientific.

3Wartofsky, Marx W. 1968, Conceptual Foundations of Scientific Thought , p. 95. Our italics.



7.1. Substance and Form 209

be distinguished on the basis of either meaningfulness or falsifiability. We have already argued

above that, in the context of generation—when scientists are engaged in creative/constructive

thinking—truth and falsity considerations alone are not the determining epistemic values.

With these observations we shall get into the main theme of this chapter—the role

of inversion in the genesis of scientific knowledge.

7.1 Substance and Form

One of the highly entrenched thematic-pairs in ancient Greek thinking which gets

entwined with many other fundamental thematic-pairs is Being and Becoming. Some of

the entwined thematic-pairs are Permanence and Change, Heavenly and Mundane, Just and

Unjust, One and Many, Real and Apparent, Universal and Particular, Subject and Predicate,

etc. These pairs are to our immediate understanding semantically opposed notions. In

ancient Greece the association of opposites had an order such that Being was associated

with oneness, heavenly, permanence, real, etc., and Becoming with their opposites. These

associations remained entwined as if they were logically necessary for a long period. It took

many centuries to see the possibilities of untwining the associations among the thematic-

pairs. Though initially this sort of associated order gave tremendous impetus to attempts at

systematization, later developments suggest that they also constrained creative and parallel

thinking. Some of the most modern developments in science can be understood as those

that untwined the older associations, that were till then taken to be necessary. It is indeed

possible to rewrite the intellectual history of western thought in terms of the discovery of

entwinement and untwinement of thematic-pairs, old and new. The present attempt is an

initiative in this direction.

The account that follows starts with one of the first attempts of systematic thinking

by Thales (b 624 B.C.), who is generally regarded as the initiator of a series of speculations

about the nature of the world and we shall follow the developments up to Archimedes (287

- 212 A.D.). Our attempt will not be to present a historical account of ideas of this period.

Nor are we going to present any new historical details. It is primarily a re-presentation of

those familiar ideas borrowed from works of history of philosophy and science, in order to

achieve the desired objective.

The major problems that engaged the ancient thinkers of Miletus, who are known

by the name physiologoi or the Pre-Socratics, are basically of two kinds. One may be called

the search for raw material and the other the problem of change. The former problem is:

What is the basic stuff or substance of nature? Those who could allow for more than one
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raw material asked the question: What are the raw materials or ingredients which go to

form objects of the natural world? The latter problem is to explain the changes in the ever

transforming world: What process is responsible for the changes in the world? What agencies

control this process?

These questions might have carried different meanings if the sort of answers that

were sought were mythological. The Physiologoi were, instead, seeking physical ‘answers’,

that is why they were called as they were.4

These Pre-Socratics formulated a series of alternative hypotheses in their efforts to

solve these two problems. However these hypotheses were not proposed independently.

Rather, they [Pre-Socratics] developed in the course of criticism, each representing
an attempt to overcome the inadequacies or inconsistencies of the preceding one.
What emerges is a dialectic - a process of conjecture and criticism - which marks
off this mode of thought from acritical commonsense and myth.5

In the above passage Wartofsky correctly highlights certain essential factors, such as the crit-

ical attitude, the hypothetical nature of the proposals, and the supersession of commonsense

and myth (also perhaps mysticism), playing their role in the genesis of scientific thought. We

wish to go slightly deeper and attempt to understand what presuppositions are at the back

of their mind when they criticized one another and postulated another idea.

The two problems mentioned above gain their significance from two corresponding

facts of a highly general kind that form part of the accepted knowledge of that period. The

facts are that the world contained a variety of things, and that they are in constant flux. The

facts can be briefly labeled as ‘variety’ and ‘variability’. These specifically gain significance in

the present context because the two synthetic methods, inversion and taxonomy, correspond

to systematizing variability and variety of the world respectively. The interdependence be-

tween the two problems generates a methodological tension between inversion and taxonomy,

which we shall elaborate below.

The various theories offered by the thinkers of this period reveal that what they

were seeking was indeed an explanation in terms of the first principles of nature. Seeking

an explanation could mean several things. First that all the observed variety is apparent,

complex and confusing , but the underlying reality is in fact simple. Such explanations are

premised on the belief that most immediate perceivable matter in the world is not basic but

derived from some primordial substance, and that it is from this basic substance that the

4The Greek term for ‘nature’ is ‘physis’ , and by physiologoi it is meant ‘inquirers into nature’. Wartofsky,
ibid p. 71.

5Ibid .
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world is produced by a process of transformation or change, where change is taken as a matter

of fact.

Let us see some of the elements of the theories of this initial phase and then return

to this question in order to understand their presuppositional thematic-pairs.

One of the initial attempts at ordering the variety of nature culminated in the

taxonomy of substances. The variety of nature according to the Greeks can be reduced to the

four basic elements, earth, water, air and fire. This taxonomic systematization could have

satisfied the mind, but the fact that one kind of substance can be transformed into other

kinds generated a problem for this taxonomic order. Thus the reason to search for more

basic elements started. If it were the case that none of these basic elements transformed into

another, taxonomic ordering would not have created any problem. Thus transformation of

things threatened taxonomic ordering. They searched for a theory of the natural world that

should encompass the two contrasting features of stability and change substantially.6 This

continues to be an eternal tension in the pursuit of scientific knowledge.

Thales postulates that the most basic substance is seen in water—a concrete

substance—from which other basic substances like earth air and fire come into being. Some-

thing that is concrete becomes an explanatory principle. This is in fact an interesting move

of the physiologoi , as against the mythological and religious principles, that makes his thesis

extra significant from a historical point of view. He regards water as basic because water

plays a crucial part in many familiar natural processes, and it is widespread in nature. It

occurs in many different forms. Weather and seasonal cycles are also understood in terms of

water. It is involved in the lives of animals, plants, and human beings, is also predominantly

seen in inanimate things. Since it occurs in solid, liquid and gaseous state, it must be the

basic substance. The most important reason that he gives is that water is basically indeter-

minate: colorless, tasteless, transparent and without any shape of its own. It can however

take up any color, taste and shape.

These reasons for considering water as basic, throw more light on the presuppositions

behind his thinking. A candidate for the position of ‘basic stuff’ must have no determinate

individual property of its own. Thales and later other thinkers thought that the determinate

should be explained in terms of the indeterminate, its opposite. Though Thales was ‘wrong’

in considering water as indeterminate this move is remarkable because it posits that if a

basic stuff has qualities it stands in need of an explanation, thus it cannot itself be an

explaining principle. This is also Anaximander’s (611-557 B.C.) central objection against

6Cf. S. Toulmin and J. Goodfield 1962, The Architecture of Matter , p. 47.
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Thales’ proposal. The basic stuff therefore must be of an unchanging kind. Plato joins

Anaximander in criticizing Thales in Timaeus:

Consider first the stuff we call water. When this is compressed, we observe it
- or so we suppose - turning into earth and rock, and this same stuff, when
evaporated and dispersed, turns into wind and air; the air catches fire and turns
to flame; while, reversing the process, the fire will revert to the form of air by
being compressed and extinguished, the air condensing once more as cloud and
mist. From these, still more compressed, flows water; and from water come earth
and rock again: so that (as it seems) they take part in a cycle of reciprocal
transformation.

Now, since no one of these material substances ever retains its original character
unchanged throughout these transformations, which of them can we without em-
barrassment assert to be the real ‘this’ - the ultimate constituent of the thing in
question?

Anaximander has another argument that is especially relevant here. The different kinds of

matter are opposed to one another, and alternates between wet and dry, hot and cold, are

at par. If everything contains water they all must be predominantly wet. Though Thales

was right in looking for some unchanging element, he was mistaken in his proposal. Thus

water as a basic substance was rejected by Anaximander, and he proposed that the basic

stuff should be entirely characterless. His theory is that apeiron, the indefinite, ‘secreted’

water. The mechanism of ‘secretion’ is as follows: from apeiron every day substances were

separated out by opposite qualities. The first to come is heat and cold by the differentiation

of the undifferentiated. These in turn gave rise to earth, air, and fire.7

The affinities of the modern notion of energy with apeiron should be pointed out

to show the significance of this attempt by Anaximander. Toulmin and Goodfield, in this

connection, make the following connection: “In itself, energy is neither magnetic nor electric,

neither kinetic nor potential, neither matter nor radiation; but it is capable of manifesting

itself alternatively, either as electromagnetic radiation, or as mass, or as the energy of motion.8

Here Anaximander becomes rather more abstract than his master, Thales, who

chose a concrete explanatory principle. His basic substance is—contrary to his master—

imperceivable. The opposites created from the basis swing like a pendulum from hot to cold,

from wet to dry, to produce the seasons of the year. That the genesis is accounted for in

terms of inversely related opposites makes his thesis specially significant, for it explains the

genesis of variety as a consequence of inverse variations. The potentiality of inversely ordered

7Cf. C.S. Peirce, in Historical Perspectives on Peirce’s Logic of Science: A History of Science Part-I
Carolyn Eisele (ed) 1985, p. 167.

8Op.cit. p. 50.
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‘structure’ to generate variety is realized by him. In this way the two basic problems, of

variety and variation, become interrelated, showing the possibilities for systematic endeavor.

Although very general a model has been conceived, which can account and connect both the

problems—variety and invariance.

Anaximenes (588 – 524 B.C.), a pupil of Anaximander denied his teacher’s Boundless

(apeiron) by saying that substance is always with qualities. And he also denied Thales’

basic substance Water, by proposing Air (pneuma) in its place. Anaximenes did not find

it necessary to postulate a substance like apeiron that is totally devoid of all its qualities.

Instead he thought of pneuma, which being invisible, colorless, odorless in its pure form can

be the basic substance. From this universal pneuma everything else can be generated. When

it is homogeneous, that is when the inherent opposites are in a sort of equilibrium, the air

becomes pure and invisible.9 The effect of opposites such as heat and cold, wet and dry

make it visible. His solution to the problem of variability or change is more significant, for

he initiated certain themes that have been retained in one form or other to this date. His

solution consists in the principle of condensation and rarefaction. According to this doctrine,

when Air becomes rarefied it becomes fire, when condensed it becomes wind, cloud, water,

earth and stone, in increasing degree of condensation.

His solution to the problem is remarkably ingenious. For he comes out with an

abstract thematic-pair of processes rather than qualities of substances, which for him are

concrete. This is unlike his teacher for whom the basic substance is an abstraction, in the

sense that it is ‘shaved’ of all the qualities. The specific ingenuity consists in showing the

possibility of an explanatory model for the changes taking place in the world.

The mechanism of transformation proposed by him, in terms of condensation and

rarefaction, is an abstraction in so far as it is taken out of certain familiar concrete actions and

common experience rooted in the technical skills concerned with pressure variation and from

the observation of evaporation and condensation. It is cited as an example of an explanatory

model developed from a technological model.10 Human beings’ action and their attempt to

control and manipulate of natural phenomena could be a rich source of explanatory models.

Piaget’s genetic epistemology draws heavily on such actions or operations inverse to each

other as the source of abstract theoretical notions.

The significance of Anaximenes’ explanatory model in the present context lies in the

9Visibility or perceivability depends on whether an object is homogeneous or heterogeneous, is in itself
an interesting idea applied in modern material science. Transparency of materials, such as glass, depend on
whether the order of the elements in the material are homogeneous (pure) or not. Materials become opaque
mainly because they are heterogeneous or impure. Disorder in the crystal lattice produces similar effects.

10Cf. Wartofsky, op.cit. p. 74.
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fact that it is one of the first abstract theories that is semantically structured on the basis of

an inverse relation. Though the idea emerges out of concrete human actions or operations,

once it comes out in the specified form, leaving the content behind, it becomes a symbolic

form. The advantage of this ‘alienation’ from the original context and content is that we

become free to apply it in contexts other than the original, and also fit in content so different

from the original. For example, Anaximenes’ model found application in the characterization

of longitudinal waves.

The emphasis that we have been giving here to Anaximenes’ ideas is rather unusual.

For example, Peirce observes that Anaximenes’ theory is more observational than that of

Anaximander, citing his idea that celestial things like sun, moon etc., are thin disks and

not spheres because disc shape is better supported by air than the spherical shape. But

considering an observation from mundane experience, and extending it to the heavenly spheres

is more radical and crucial from the point of view of the development of science than Peirce

appreciates. Though Anaximenes’ was also a speculative model it was a clear instance of

constrained speculation, which is a necessary tenet of scientific thinking. Applying earthy

features like ‘disk shape’ to heavenly bodies should be regarded as an interesting turn in the

history of science. Here he did not hesitate to attribute a property of earthly things to that of

heavenly things, contrary to the then dominant view that heavenly things are Beings that do

not Become. It may also be pointed out again that the significance of making an air like thing

and not apeiron fundamental is again indicative of his tendency to come back to earth. This

is rather essential for the development of natural science, which though it postulates abstract

models, has as its ultimate objective their application to concrete natural phenomena. He

may be wrong in making air the basic substance, or calling ‘heavenly’ spheres as ‘earthy’

disks, but his move possesses the character of natural science.

It may also be pointed out that Peirce makes no mention of the theory of con-

densation and rarefaction while presenting the ideas of Pre-Socratics. He writes only two

small paragraphs of only ten lines about Anaximenes.11 However Peirce spends much time

in elaborating the quantitative or mathematical models proposed by the Pythagoreans and

Archimedes. This further supports our earlier remark that the significance of Anaximenes’

contributions to science is not well recognized. To our understanding the contributions of

Anaximenes are necessary for developing mathematical or quantitative models, because it is

in his thinking that one of the most vital ideas of making relation as an explaining principle

emerges. Since it is well known that the basis of mathematical understanding is relational,

11Op.cit. p. 167.
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the genesis of this notion in his thinking requires some elaboration.

This can be done by understanding the presuppositions behind his thesis of conden-

sation and rarefaction. From this foundational theme begins to emerge another thematic-pair,

form and matter . The notion of compression implies that the ‘particles’ of air come closer and

closer, increasing the density of the substance. And the notion of rarefaction implies just the

opposite. This idea is extremely crucial because the substance itself need not change in order

to produce a change in ‘out-look’(manifestation), but only a change in spatial relationship

in terms of proximity and distance is sufficient. This implies therefore that Anaximenes,

knowingly or unknowingly, supposes a distinction between substance and relation, the for-

mer being concrete and the latter abstract. Thus the hypothesis proposed by him introduces

a new dimension in scientific thinking making the changing relationship of the concrete un-

changing substance a central feature of the mechanism of transformation. Without this idea

neither atomistic nor mathematical conception of the world would be possible. This under-

standing appears to have support in the historical fact that Atomism, in its mathematical

form developed by Pythagoras and in its physical form developed by Empedocles, Anaxago-

ras and Democritus, appear soon after the first phase of speculations, which are generally

characterized as those based on substance as opposed to form.

7.2 Change and Persistence

The developments made by Atomists can be best understood against a backdrop of

the two opposing traditions of Heraclitus and Parmenides.

Heraclitus (535-475 BC) believed that the universe is in a state of flux or ceaseless

change. Every element of every substance is a union of opposite qualities, and this unit is

never stable. Harmony is a result of ‘stirred’ union of opposites. Since fire symbolizes the

notion of incessant activity, something that never comes to rest, he chooses this as the basic

element. Where does he see the unity of nature? The appearance of things is that they

are many, discrete and separate, but the reality underlying these appearances is the unity of

this constant flux and transformation. Since this operates by necessity, the flux is ordered,

and therefore it can be understood. The basic element, fire, plays the role of ‘exchange of

currency’ in the various transformations. “All things are an equal exchange for fire and fire

for all things, as goods are for gold and gold for goods.”12

A theme that lived and perhaps may live a long time is the pair appearance and real-

ity . Though the idea is tacitly supposed in the predecessors of Heraclitus it becomes manifest

12Quoted in Wartofsky op.cit. p. 75.
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with him. This distinction is extraordinarily important in the development of science and also

philosophy.13 Along with this arrives another pair, sense and reason, and later observation

and theory . The entire history of science and philosophy of science can be characterized by

the tension between the above interrelated pairs. Despite the constant flux and transforma-

tion there is the underlying unity of the logos (reason) which ensures comprehensibility. The

thematic-pairs, appearance and reality, sense and reason, one and many become entwined in

the following way:

what appears to the sense as many is ultimately one; thus the senses without
reason are deceptive.14

Parmenides (b.510 BC) challenged Heraclitus by formulating the antithesis to the

thesis of Heraclitus. According to him only one eternal, underived, unchangeable being can

exist. It is continuous, indivisible without breaks, an indeterminate mass. His explanation

of the fact that we do perceive change in the world is that the world of sense may perceive

change, but it is an illusion. Perception confuses Being with non-being (non-being is not

Becoming), and Being is given unadulterated only by reason. His main argument against the

Heraclitian notion is that a thing cannot change its qualities. To say that it can is to say

that something is and something is not , that something can come from nothing, and that

something can become nothing.

We should not confuse the two thematic-pairs, permanence and change with that

of Being and Becoming, since in this phase no philosopher has made such a correspondence.

Both Heraclitus and Parmenides, and also the predecessors of them, were trying to grapple

with the nature of Being itself, i.e., whether Being is permanent or changing. After Plato

the question of whether Being is permanent or changing should never arise, because Being is

by ‘definition’ permanent or unchanging. It can be seen easily by paraphrasing the theses of

Heraclitus and Parmenides in the following way: Heraclitus says Being is Becoming , while

Parmenides says Being is Being , and is only apparently Becoming. Plato develops the idea

of Parmenides, and after him Being becomes entwined permanently with permanence, and

Becoming with change.

An interesting aspect of Heraclitus is that the basic Being itself contains both the

opposites. That opposites can coexist in one Being, provoked the Eleatics. In their attempts

to prove the impossibility the most basic principle of logic, namely the principle of noncon-

tradiction, emerges. To say that Being is and is not is contradiction. If we were to trace

13Cf. Wartofsky ibid p. 76.
14Wartofsky, Ibid, p. 76. Another famous distinction between primary and secondary qualities, to be

introduced only later by the Atomists (Democritus), can be readily seen to be entwined with the above pairs.



7.2. Change and Persistence 217

the birth of logic (deductive), which we are not presently engaged in, we would do it at this

phase of history. The tension between One and Many, Being (is) and non-Being (is-not)15

has made possible the genesis of certain foundational principles upon which the edifice of

deductive logic was later built. Zeno, a disciple of Parmenides, developed a method of proof

commonly known as reductio ad absurdum, which had a remarkable career in both logic and

mathematics.

For one thing this phase becomes a major turning point, and also a ‘breaking’ point,

because one of the monadic logical operators, negation, comes out of the soup of opposites,

and becomes a bed-rock of deductive logic. We are now attempting to show that science

during the course of its development extracted another monadic operator, inversion, from

that very soup. We intend to make this the bed-rock of synthetic logic, which, we claim, has

meanwhile developed sufficient reasons of its own to become an independent logic.

The conflict between Heraclitus and Parmenides (b. 510 BC) can be interpreted as

the tension between the two kinds of logical opposites, negation and inversion. The former

kind cannot allow the presence of opposites at the same ‘site’, which the latter necessarily

allows. Parmenides fashioned the former idea which is presupposed in the principle of non-

contradiction. It may be possible to show that Heraclitus fashioned the latter idea, for if

it is only that which can allow the opposites to be together or coexist. This is a possible

interpretation, which however needs to be supported from textual evidence.

Coming back to the issue, for Atomists both the theories—of Heraclitus and

Parmenides—have an element of truth. Things appear to persist and also appear to change.

How is it possible for things to persist and yet change? To get out of this impasse some

reconciliation is called for. Such an attempt was made, as already mentioned, by the Greek

Atomists, Empedocles, Anaxagoras and Democritus, who furnished a solution. Their thesis

was remarkable for its ingenuity in its anticipation of modern scientific notions. The solution

mainly consists in interpreting the predecessors’ notions of permanence and change as not

absolute but relative notions. With this manoeuvre they could now say relative permanence

and change produce no riddle. The solution of the riddle, is neatly summarized by Frank

Thilly.

[A]bsolute change, they [Eliatics] say, is impossible; so far the Eleatics are right. It
is impossible for a thing to come from nothing, to become nothing, and to change
absolutely. And yet we have the right to speak of origin and decay, growth
and change, in a relative sense. There are beings or particles of reality that
are permanent, original, imperishable, underived, and these cannot change into

15For later thinkers like Sartre and Heidegger the tension is represented in the form of Being and Nothingness.
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anything else; they are what they are and must remain so, just as the Eleatic
school maintains. These beings, or particles of reality, however, can be combined
and separated, and when combined they form bodies that can again be resolved
into their elements. The original bits of reality cannot be created or destroyed
or change their nature, but they can change their relations in respect to each
other, and this is what is meant by change. ... Origin means combination, decay
separation; change is an alternation of the mutual relations of elements.16

For the Atomists Being is indivisible, eternal, and unchangeable, and on this point they is no

disagreement with Parmenides. But they disagreed with him on the belief that Being is one.

Their Being is many. It does not imply that Being is divisible, because Being is as such many,

and each particle (atom) of Being is certainly indivisible. The indivisible atoms are ‘simple’,

from which more ‘complex’ things can be created by combination. If this is how the thesis of

Parmenides is contained in the synthesis, in what way is the thesis of Heraclitus contained in

it? Change or transformation of things is possible and it takes place due to separation and

combination.

Also note the close relation between Anaximenes’ synthesis and the Atomists’ syn-

thesis with regard to the employment of the thematic idea, form. Both believed that change

or transformation is an alteration of the form, i.e. mutual relations of elements. But their

synthesis employs the processes of separation and combination, and not the doctrine of con-

densation and rarefaction. For the Atomists the thematic-pairs part and whole, and simple

and complex are vital presumptions, while for the Anaximenes they are not crucial. This

move again is very significant.

With these ideas added in the ground the soil became fertile, and the ‘seed’ being

already there, i.e. the urge to solve the riddle, we have all the necessary conditions available

in the foundation for the birth of the thematic-pair, analysis and synthesis. It is represented

here in its synonymous form, separation and combination.

For some Atomists like Empedocles there are four basic kinds of elements corre-

sponding to the four basic qualities, solidity, liquidity, fiery, and aeriform. For Anaxagoras

there are infinitely many elements corresponding infinitely many qualities. Most of the per-

ceivable things of the world are made up of combinations of all the infinite variety of kinds

of elements. The numerical preponderance (which is same as proportional variation) of one

over another introduces distinctions among things. For Leucippus too the number of atoms

is infinite. “The material of the atoms themselves is packed entirely close, and can be called

what is; while they are free to move through void (which may be called what is not). By

16F. Thilly 1956, A History of Philosophy p. 41. Our italics.
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coming together in association, they are responsible for the creation of material things: by

separation and dissociation, for their disappearance.”17

Greek thinkers have possibly played with all possible constructions of the world.

Earlier we have seen modeling the world on the basis of the Boundless (apeiron), and here with

the Atomists we see the bounded, uncuttable atoms, a limit beyond which no homogeneous

substance could be divided, as the basis. This notion they have seen can be coherent only if

there is void . As we have seen above in the Leukippos quotation, they did postulate void,

the atoms are separated by the regions of space devoid of all properties. The necessity of

void, which is what is not , could have been felt due to the problems posed by Parmenides in

response to Heraclitus’ theory. The dilemma to accept or reject void (vacuum) can be seen

through out the development of science.

Though the model of Atomism with all its features has its worth it has brought with

it another notion that is worthy of special consideration, which is the idea of conservation.

They have successfully shown the possibility of conservation in the world of transformation.

In the words of Empedocles,

From what is wholly non-existent nothing can arise: and for what truly exists,
to perish is impossible and inconceivable; for it must always continue to exist,
wherever one may put it.18

Though truly existing things do not perish, different material things come and go as a result

of combinations and separations of the basic elements in varying proportions, not varying

substance, which is conserved.

The point to be made here is the necessary connection between the tendency to prove

the conservation of substance and explain the transformation of substance with the inversely

ordered explanatory model in terms of combination and separation. Changing relations of

the elements is the theme fashioned by the Atomists, applying the idea of Anaximenes.

Once we choose this theme as the explanatory basis, the kind of models that we can build

can develop on the basis of the two possible relational variations that are inverse to each

other. Whether the relation is compression and rarefaction of one basic substance like air, or

combinations and separations of many elements or one element.19 Thus the structure of the

explanatory models developed by Anaximenes and Atomists incorporate inverse variations

of relations, which we claim as necessary aspect of scientific knowledge. So far the limitation

of the models presented above lies in their being qualitative. The major attempts reflect

17Leukippos quoted in Toulmin and Goodfield 1962, Architecture of Matter, p. 56.
18From the poem of Empedocles quoted in Toulmin and Goodfield, p. 53.
19Pythagoreans, we shall see below, developed the form of Atomism which is based on one element.
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the reduction of certain qualities in terms of others. But the attempt to reduce qualities to

quantities has not been shown to be a possibility. However, in the models just presented the

idea of numerical proportion is lurking inconspicuously. In order that the notion of numerical

proportion become a feasible alternative the idea of unit of measurement is necessary, which

has not been developed as a part of the cosmological modeling. It may be pointed out that

measurement of various quantities is already known to various civilizations much before this

period (5th c. B.C.), therefore the attempts to build a quantitative cosmological model should

not be confused with the very idea of measurement. Initial attempts towards quantitative or

mathematical models of explanation, based on the lines of Atomists, is made by the school

of Pythagoras. This was going on parallel to the development of physical atomistic theories.

In the Pythagorean tradition the elements were not taken as physical entities which

could be perceived or felt, but as conceptual entities, like number . All things are constituted

as numerical relations or ratios or proportions. The ultimate structure is mathematical.

This quantitative move requires to begin with a notion of unit magnitude. The Pythagorean

notion of unit is a confusion of both arithmetic (numerical) and geometric magnitude. This is

a point-unit that cannot be cut any further, therefore atomistic, and immutable. This unit is

not itself a number, but generates number. It is interesting to note that for the Pythagoreans

two is taken to be the first number. They conceived a line to be generated out of two points,

plane by three (triangle), solid by four (pyramid) etc., by relational combination of ones. The

reality that is intelligible is taken to be the relation between numbers (ratio), which is also

rational.

One good example of studying proportional variation in the school is the study of

the relation between the length of the string of musical instruments and the pitch of the tone

of sound produced. This, opened up the possibilities for explaining phenomena by reducing

qualitative into quantitative aspect. These are the initial attempts of geometrical construction

of the physical world, which are so crucial for the development of modern science.

Another noteworthy point of the Pythagorean theory is that nature is a combination

of opposites like limited (odd numbers) and unlimited (even numbers), one and many, rest

and motion etc. This is a clear influence of the intellectual environment of that period, where

to think is to think in thematic-pairs. They could not consider the importance of negativity

or subtraction as opposed to positivity and addition, as the basis of modeling.

It is noteworthy that none of the physiologoi thought solid earth as a possible can-

didate for being the basic substance. Thales took the liquid water, Anaximenes the gaseous

air, Heraclitus the energetic fire, but there were no takers for the solid earth. This reflects
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their presupposition that earthiness is not good, not just, it is regarded the ultimate mundane

thing. Let us recall that Socrates was embarrassed by Parmenides who after listening to the

former’s postulation of the world of ideas, asked him whether the dust, mud and hair etc.,

the earthy things, also have corresponding Universals.20

Another crucial point to note is that opposites are not seen as existentially contra-

dictory features, with the exception of Eleatics, but rather as concurrently existing features

of Being. Eleatics confused the principles of thought and of Being. The condition of rational

discourse is imposed on the conditions of Being. It is in the school of Eleatics that language,

thought and their form have begun to become serious objects of intellectual analysis.

Before we close the section on the initial attempts at modeling the physical world

the outcome of the discussion may be presented. One of the points that we attempted to

highlight in general regarding the Pre-Socratics is that their thinking is regulated by opposites

of different kinds. The three main models that are particularly important are the model of

condensations and rarefactions (of Anaximenes), the model of combinations and separations

(of physical Atomists), and the model of mathematical Atomism based on a single atom,

one. All these models are developed on the basis of the possibility that inverse variations of

relations can be taken as the explanatory principle for accounting for variation, and variety

in the world.

In what follows we will see how the qualitatively inverse order gave way to quanti-

tative inverse order. The latter’s presence will be shown to be necessary for any development

of mathematical physics, which was founded by Archimedes.

7.3 Plato and Aristotle

We have come across some of the early explanatory models based on the inverse order

of highly general phenomena. One may say that for the Pre-Socratics, with some exceptions,

the entire cosmos was taken as a single large and highly general process or phenomenon, and

the differences within processes and phenomena were required as only apparent. Among the

few specific cases where they applied their theory are the changing seasons, earth quakes,

formation of clouds, the process of raining, snowing etc. According to modern standards,

despite the fact that we have better theories, none of the scientific theories can account for

all these phenomena. Change of seasons, and the causes of earth quakes etc., are still very

far from getting accounted for by any single model. A significant fact about science emerges

from this observation, which is that scientific theories are about specific phenomena, like

20Cf. Plato’s Parmenides.
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motion, heat, light, sound, life, etc., and within each case the generality of a theory is limited

to that very case. Only within that scope and relative to it, can we speak of a theory being

general or specific. Thus despite the fact that science is general, it is also specific in the sense

explicated. Science and metaphysics can be distinguished on the basis of degrees of specificity

or generality.

The space where science can operate, cannot be at the level of summum genus,

nor can it be at the level of ultimate particulars. Its space is between the summum genus

on one side, and particulars on the other.21 Most of the world that is occupied in this

space, sandwiched by the summum genus and particulars, which science has access to, is

invented or discovered by certain methods and modes of scientific inquiry, such as abstraction,

idealization, etc. Therefore the limitation of science is by virtue of its method. Though science

has a tendency to be specific, it stops at the level of species, and to go ‘beneath’, if not beyond

the species, is methodologically impossible. Therefore when we say that science is ‘specific’

it should be understood in a relative sense and not in absolute sense of referring to ultimate

particulars. The tension between the generic and the specific is responsible for the birth

of science and its further development. At the methodological level, the tension is between

inversion and taxonomy.

This tension is also represented in later Greek thinking between Plato and Aristo-

tle. The former’s theory represents the tendency towards the highly general, abstract, and

mathematical, and the method is largely hypothetical, while the latter’s theory represents the

tendency to root science in commonsense and everyday experience, and the method is largely

inductive and taxonomic and is also against applying the mathematical method in physics.

In the account that follows we shall attempt to show that this antagonism gets resolved in

the development of science by a convenient ‘marriage’ between the two. This point however is

already well understood. Therefore the question naturally arises what more is to be added to

this familiar episode. Our thesis is that this ‘marriage’ would not have been possible without

inversion.

In the thought of Plato as well as in Aristotle, the entire world is polarized into

opposites, which can be characterized as global polarization. Since science, as already men-

tioned, cannot be at a global level, despite being general, there is a need to turn the analysis

21Both Plato and Aristotle are known to have opined so. Some interpretations however try to show that
Aristotle believed in the possibility of a science that is not merely about species but about individuals. For
Aristotle the essence or form inheres in the individuals. In so far as individuals can have some of the essential
features that scientific knowledge can know, to that limit individuals can be object of scientific understanding.
Idiosyncratic features of individuals cannot be the conditions of classification and therefore these features are
outside the purview of science.
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towards the local level. In the school of Aristotle the resolution of a phenomenon in terms of

inversely related opposites at a local level, as in the case of balance (lever), took place. To

distinguish this with the former kind we shall call this local polarization. This polarization

made the application of Euclid’s geometry (which was at that time the paradigm of mathe-

matical science) possible in physical cases. This not only produced immediate fruits, as can

be seen in the development of mechanics, statics, and hydrostatics, but has also shown a

direction for inventing further models of explanation in the case of other phenomena such as

motion. Brilliant minds like Galileo could receive the signals from these developments, work

out the analogies, and finally begin solving the problem of motion. In what follows we will

elaborate these developments.

The tendency towards dialectical thinking as a characteristic feature of the Pre-

Socratics is already noted. Entwinement of the pairs of opposites reaches a climax in Plato’s

thinking, and is in many respects akin to that of the Pythagoreans. The pairs of opposites

are entwined with Being, good and light on one side, and Becoming, evil and darkness on

the other. Some of the pairs are one and many, rest and motion, straight and curved,

limited and unlimited, even and odd, etc. Thinking in opposites is so prevalent that Plato’s

accounts about human actions, art, knowledge, ontology, are all discussed by introducing an

opposition. Thus, the purely routine application of uncomprehended rules of skill on one

hand is contrasted with the deliberate practical action based on insight into causality and

on reflection; imitative art on one hand and creative art on the other; opinion (doxa) and

knowledge (episteme); the realm of things (pragmata) and rational ideas (logoi); the world

of phenomena and the world of forms.22

Plato’s theory is a synthesis of three earlier philosophies; the mathematics of

Pythagoras, the Atomism of Democritus, and the four elements of Empedocles. Plato empha-

sizes the Pythagorean obsession with geometrical figures, rather than their love of numbers.23

This is indeed a positive contribution. However the fact that he was developing models of

explanations that were already known, does not make it a fundamentally novel theory. When

we look at his Dialogues on various subjects, such as justice, morality, beauty, knowledge,

method, polis, art, techne, etc., we would know that he spent most of his efforts on subjects

that are close to human concerns. It is well known that after the Sophists’ ‘intervention’, the

concern of philosophers at the time did turn from the grand models of the universe toward

22Cf. Dijksterhuis 1961, The Mechanization of the World Picture pp. 14-15.
23K. Popper explains that it is due to the problems of the ‘irrational’ which remained a great stumbling

block for the development of arithmetic for a number of centuries to come. Since geometrical figures could
accommodate irrational numbers, Plato attempts to give them an essential place in the ultimate triangular
elements of his construction. Cf. his 1963,Conjectures and Refutations: The Growth of Scientific Knowledge.
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human affairs. Understood from this point of view his major concern is not to develop a

theory of the cosmos. However he composed a grand synthesis in his sole Dialogue in science,

Timaeus, which should be considered as a critical culmination of the initial efforts that went

on in the genesis of natural science. This Dialogue remained a major inspiration, and pro-

vided direction for later mathematicians and physicists for many centuries. Plato being what

he is, his further developments of atomic and Pythagorean ideas have an order and beauty

that make the work immortal.

The fundamental idea of Platonic thought, as is well known, is that the world of

phenomena or perception has things that are imperfect copies, imitations of ideal forms or

ideas, which are supra-sensible, and can be accomplished only by pure thought (often used

synonymously with mathematical thought). Being influenced by Pythagorean views of the

cosmos, his interest is in abstract mathematical constructions. In his Dialogue Timaeus he

deals mostly with music and astronomy.

Plato’s love for mathematical ordering can best be understood from his explanation

of the basic elements, earth, water, air and fire. Why are there only two elements between

earth and fire? It is explained as a consequence of the mathematical truth that between the

cubic numbers, a3 and b3 there can be two mean proportionals, i.e., two terms that form with

the two original terms a geometric progression (a3, a2b, ab2, b3). Cubic numbers were chosen

because the objects were a creation of a three dimensional universe.

Plato’s world view can be called the ‘mathematical chemistry of elements’ as opposed

to the ‘physical chemistry of elements’ of the Greek Atomists. The ultimate building-block

elements are two kinds of triangles, the right-angled isosceles triangle and the right-angled

triangle with 30o and 60o degrees. The four basic elements, earth, water, air, and fire, can be

formed from different but specific combinations of the two basic triangles. Four of the former

kind combine to form a square, 24 of them to form the cubic corpuscles of the element earth;

six of the latter kind make an equilateral triangle, 24 of them for a tetrahedral fire particle,

and 120 for an icosahedral water particle. Thus one major difference, in spite of the affinities

with Atomism, which stands the Platonic position on an independent foundation, is that the

events taking place in the universe are not subject to blind chance. The universe was given

a purpose, contrary to the purely mechanical model of the Atomists.

Despite the common framework that Plato and Aristotle share, the significant dif-

ference in their views about the ontological status of universals allows one to distinguish

their positions so much so that they can even be read as antithetical views (Cf. footnote 24

page 25). For Plato universals or Forms do not ‘exist’ in the corporeal world, while for Aristo-
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tle they inhere in the actual things and processes in the world. Accordingly, for Aristotle, the

reasoned experience can indeed know this world, while for Plato the reasoned experience can

lead to understanding not this world but the world of Forms. A thing or a process is what it

is by virtue of the essence by means of which individuation is accomplished. Aristotle’s term

‘form’ gains a newer connotation in Greek thought. It is the characteristic that individuates

an activity or an object and the way in which an object functions or operates.

The typical characteristic that we need to know for gaining scientific knowledge

is, according to Aristotle, that of a kind of thing, and not of any character of particular

things. Scientific knowledge, therefore, is about things which become proper members of a

class obtained on the basis of those characters that are common to all the members, and

not individual characters.24 This is the limit Aristotle sets for scientific knowledge. Formless

matter (un-classifiable) and matterless form (empty classes) are conceptual or methodological

limits, which exist only as objects of thought.25

While Plato also believed that episteme consists in the relationship between Forms

which can be interpreted as classes, and would also agree with the limit Aristotle sets to

science, as already mentioned, he would not apply that knowledge to things of this world.

Since natural science, is claimed to be about this corporeal world, it can be readily seen that

Aristotle’s views are closer to today’s natural science. Despite all the mistakes Aristotle and

his schoolmen committed, in the Lyceum as well as in Alexandria, as we shall see below, it

was this view of science that contributed more to the study of natural order than Plato’s. The

latter’s contributions however are commendable in the field of geometry and mathematics.

From the point of view of the present task, i.e., to see the development of the idea

of inversion, Aristotle’s study on motion and statics are immediately relevant. Aristotelian

physics is based on the postulate that every motion presupposes a mover: all that moves

is moved by something else. Aristotle’s conceptions generally are close to what we observe

in everyday experience. Since we apply force in order to move anything, he inductively

arrives at the above principle from this. The Atomists before him postulated that atoms

are in perpetual motion, and therefore the problem of the mover does not arise. As we

know Aristotle is highly critical of the Atomists, and also opposed the possibility of the void.

Since action at a distance is also inconceivable, the force must be in conjunction with the

moving body, (motor conjunctus). The Atomists freely speculated about the world without

24That if something is of a particular kind then it would have the characteristic of that kind may sound
“painfully obvious and empty”, but it is the basis of formal logic of classes (class calculus) essential for the
development of deductive logic, which is essentially non-ampliative. Triviality is the hallmark of the basic
principles of any logic.

25Cf. Wartofsky, op.cit. p. 93.
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any methodological stipulations, while Aristotle believed in the method of generalizing from

everyday experience, which indeed became a major stumbling block from the point of view

of giving a coherent and unambiguous interpretation of motion.

By motion Aristotle means any transition from potential to actual being. He distin-

guishes four species of the genus motion: 1. coming into being and passing away (generatio

and corruptio) 2. altering qualities of a thing (alteratio) 3. increase and decrease of quantity

(augmentatio and diminutio) and 4. change of place (motus localis). The first one involves

substantial change while the latter three are accidental.

The problem of motion for Aristotle, is basically of inanimate bodies, for in the case

of animate bodies the vital principle, soul, is also the principle of motion since they move

by their own efforts. The motion of inanimate beings is again distinguished into natural and

forced . It should be noted that his approach to every problem has the character of following

the general taxonomy of things. For each category of motion a separate theory was suggested.

Aristotle also had a different theory for celestial bodies, which by their very nature carry out

unlimited uniform circular motions. Therefore the question of applying theories framed in

connection with the terrestrial phenomena to the celestial was excluded. That different classes

of objects need different explanations of the phenomena of motion, is unacceptable from the

point of view of present standards of science. Thus Aristotle’s obsession with taxonomic order

was another stumbling block for the development of a science of motion.

Stones falling down towards earth and smoke raising up in the air are two kinds of

examples of natural motion, while a stone thrown up or an arrow shot in any direction are

examples of enforced motion. The earth has its natural place at the center of the universe

(earth), and fire at the periphery of the universe. This classification is again based on the

Greeks’ ordering of the four basic elements. The two extreme elements (elementa extrema)

earth and fire have opposing tendencies, the former gravitates, and the latter levitates, be-

cause they are extremes of the opposites heavy and light. The other two elements, elementa

media, are placed relatively; water above earth, and air above water. Earth and fire cannot

be the media for falling bodies. Motion of earth and fire can take place only in media, and

motion of anything in vacuum is ruled out as impossible. Thus the main problem of motion

is the problem of elementa extrema.

Though it impeded the progress of science of motion, the presupposition that motion

takes place in a medium, has also helped to apply the principles of statics and hydrostatics

to the problem of motion in general by analogy. We shall see the details shortly.

The phenomenon of falling bodies raises several problems. The observational fact
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that different bodies fall at different speeds needed explanation. From the instances such as

a leaf fluttering to the ground and the falling of a stone and retarding of the fall when it

takes place in a liquid (which is denser than air), Aristotle assumes that the time taken for

a body to fall is proportional to the density of the medium and inversely proportional to the

weight of the falling body. Symbolically,

t = k.D/W

where t is the time taken to fall a given distance, W the weight of the body and D the density

of the medium through which the motion takes place. A body that is ten times as heavy as

another must take one tenth of the time to fall a given distance. Philoponus (5th - 6th c.

A.D.) rejects this principle of Aristotle precisely on observational grounds, because in reality

bodies that do not greatly differ in weight do appear to have approximately the same rate

of fall. This is an instance that shows that principles induced from observations can give

contradictory results.

The other problem is that the velocity of a body appears to increase during fall.

Since greater weight would give greater motion, the object could be thought of as gaining

weight as it reaches the ground, in which case this motion is a function of distance (i.e.,

height). An external (accidental) factor such as distance could not have any influence because

the substantial form of a falling body cannot change due to such factors. Here Aristotle is

uncertain, because in the case of differential fall of objects, he says that motion can change its

quality in relation to other objects, such as the medium, density being a relational property.

He even proposes the proportionality relation as stated above, which is indeed a relational

assertion. Therefore his theory is not free from ambiguities and uncertainties.26

Similar or perhaps more acute problems cropped up in his account on projectile

motion. When an object is thrown up in the air, the motor conjunctus is not ‘visible’,

therefore it is imperative that this be explained. His hypothesis is that after a projectile

leaves the hands of a projector the body moves by the force of the successive layers of the

medium, to which the projector transferred the force. That is the projectile is kept in motion

by the medium. This force gets weakened as the body goes upwards, but how and why

this takes place is not clear. Thus he faces problems in explaining cases where the force is

invisible.

26Two more questions can be asked: “First: If the principle omne quod movetur about alio movetur is to be
taken seriously, the question should also be asked: What is the motor of a body falling or rising respectively
in a natural motion? Second: Natural falling and rising motions appear to take place with increasing velocity.
How is this possible, since they are caused by a constant heaviness and lightness respectively?” Dijksterhuis
1959, Mechanization of World Picture, p. 169.
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Aristotle’s answer to the problem of bodies that move due to ‘visible’ force, such as

pulling or pushing a vehicle on road, or a vessel on water, is also based on principles that are

inductively arrived at. A vehicle moves more rapidly if it is pushed or pulled with greater

force. It is countered by the resistance, which includes many things such as the weight (inertia

or mass), friction of the surface. Symbolically,

v = F/R

where v is velocity, F is the force, and R is the resistance. It also faces problems because the

relation, stated as above, cannot apply to cases where R is greater than F . It also follows

from the relation that if F = 0, v = 0; a body which is acted upon by any force is at rest.

This is usually called the ancient (peripatetic) principle of inertia based on common sense.

It may be noted that the classical principle of inertia is counter inductive and also counter

intuitive.

Another mistake is to divide force by resistance, as if resistance and force are qual-

itatively different. Today we subtract one from the other. Proper application of the mathe-

matical operation is a vital consideration for accepting or rejecting a thesis. However, these

remarks appear simple, and what Aristotle did is a mistake only retrospectively from our

own standpoint. The fact remains that at that time the method of applying mathematics

to the ‘mundane’ physical phenomena was not yet discovered. To know which mathematical

operation should be applied it is essential to realize that quantities that are inversely related

are of the same ‘kind’ or of different ‘kind’. Today we consider force and resistance as op-

positely acting forces, based on Newton’s third law, therefore we are justified in applying

vector addition of one with the other to know the net effect. If they are of different ‘kind’

and inversely related we should be multiplying them. Considering the state-of-the-art of the

mathematics of that time it was very difficult to conceive of the operation of multiplication

on dimensions that were non-geometric. With the exception of geometrical quantities an-

cient investigators hesitated to multiply other physical dimensions with one another. These

historical observations suggest that it is perhaps dangerous to say that Aristotle was wrong

because he divided force by weight. Nevertheless, the conclusions drawn follows from what he

did state, and therefore can be properly subjected to criticism by implication, realizing at the

same time the limitations of the intellectual equipment available at the time. A comparison

of Aristotle’s method of calculating and Galileo’s method of calculating will be presented in

the next chapter.

Another problem emerges when we compare the above relation with the fall of

bodies. In the case of the fall of bodies, velocity is stated to be directly proportional to
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weight, while in the case of bodies that are pulled or pushed, the weight of bodies impedes

motion. This is another instance where contradiction arises out of inductive generalizations.

It reinforces the Pre-Socratics’ thinking that observations based on experience cannot be the

basis of knowledge of the world, because our experience is complex, contradictory, ambiguous,

unclear, chaotic and what not. They took clues from certain phenomena like condensation or

combinations etc., and abstracted from them (non-inductively) certain explanatory models.

We have seen that Aristotle had one account for each kind of motion. He never had

one very general theory of motion. Did he achieve a correct picture within each specific kind?

If that were the case the problem would have been only to come up with one general theory

of motion. He faced problems of incompleteness, ambiguity, uncertainty in almost every

proposed theory of each specific kind, while in some cases the problems were more acute than

others. The account presented above is not exhaustive enough to claim any definite proof

regarding the criticism of his theories. However, from whatever little is presented, the nature

of the problems that arise are suggestive enough to draw some general conclusions.

Another comment may be appropriate. The view held by relativists, such as Kuhn,

that Aristotle’s theory is internally coherent seems a difficult proposition to appreciate. As-

serting contradictory statements, being ambiguous and uncertain etc., are not conditions

that modern scientists’ would alone impose on any inquiry. Aristotle being a logician would

not ignore the above criticisms had he known of them. But these criticisms could not have

developed in his time, for want of an alternative conceptual scheme. After all the stringent

conditions of demonstration proposed by him in Posterior Analytics would not have passed his

own theory. However the major limitation before any logical method like Aristotle’s method

of demonstration is that it cannot do anything with undefined or ambiguous notions. It is

one thing to say that Aristotle’s conceptual scheme is different from, say, Galileo’s. Surely

it is. But it is another thing to say that Aristotle and Galileo had different standards of

rationality. To get into the details of this very important and involved debate would take us

far afield, and would be a digression from the point of view of the task of this essay, namely,

to display the role of inversion in the genesis and development and structure of science. We

shall however show some clear continuity in the way how the problems get solved.

Aristotle’s failure to reach a coherent and unambiguous interpretation of motion is

also an example of the failure of the inductive (direct) method of arriving at the postulates.

This is not to suggest that induction cannot find correct correlations among phenomena.

What is suggested is that different generalizations all induced from experience can lead to

contradictory results. As long as the conceptual scheme is ambiguous, and the notions un-
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clearly defined, the inductive method is susceptible to failure. But the method followed by

Aristotle, his inclination to relate increase or decrease of one quantity (or quality) with an-

other is what is desirable for the advancement of scientific knowledge. If only Aristotle’s

concepts had achieved adequate clarity, and freedom from ambiguity, the same method could

have given a different solution. But how does one find an unambiguous conceptual scheme on

the basis of which we can go further? We claim that the inductive method alone cannot gen-

erate a kind of conceptual scheme that science needs. There can be other conceptual schemes

that the inductive method can generate, such as those based on classification methods. But

a science that is quantitative and experimental cannot be developed out of direct methods

like induction. Both quantitative and experimental methods presuppose certain indirectly

obtained structures or models.

Thus the presuppositions with which Aristotle and Plato were working could not

have given rise to science. Though Plato is highly abstract and theoretical he denied the

possibility of the application of that knowledge to study the problem of change, for reasons

already explicated. Aristotle on the other hand was constrained by his reliance on inductive

generalizations, and also by his opposition to mathematizing the study of nature. Retrospec-

tively we can claim that neither of them realized the potential of inverse reason, which not

only made empirico-mathematical study of nature possible, but also resolved the epistemo-

logical tensions involved in studying the invariant patterns of variance. The most significant

breakthrough took place in the school of Alexandria, where great scientific minds such as Eu-

clid, Archimedes, Hero etc., attempted to resolve some of the problems in a characteristically

scientific manner.

7.4 [Aristotle] and Archimedes

What is said so far about Aristotle’s theory of motion might sound like an un-

sympathetic account. It should be kept in mind that insofar as the problem of motion is

concerned it was only after the 17th century that we could go beyond the Peripatetics. How-

ever, this sad note is only to be heard in the case of a theory of motion. Soon after Aristotle,

his students in the Lyceum and later in Alexandria developed models of explanation that

synthesized rigorous mathematical techniques of Euclid (who also belonged to the school in

Alexandria) on one hand and empirical, experimental, technological experience of craftsmen

on the other. This can be achieved only by someone, like Archimedes, who assimilated the

rigorous theoretical thinking of mathematicians and logicians, and an expertize in technical

skills, measurement etc., necessary for conducting experiments. Archimedes was one such
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person, seldom can we find another of his kind.27

What was required for achieving the synthesis was something more than inductive

generalizations and the taxonomy of phenomena. The synthesis was sought in the method of

idealization, (a method better known to the Platonists) and experimentation to achieve an

idealization in physical circumstances by isolating and controlling certain conditions. Both

these as necessary characteristics inhere in physics as we know it today. Initial attempts in

this direction took place in [Aristotle]’s treatise called Problems of Mechanics, to be developed

later by Archimedes.

The work Problems of Mechanics was believed to be written by Aristotle, but from

the views expressed by Aristotle elsewhere it is more likely that the work was composed by

others in his school. Doubting Aristotle’s authorship is plausible, because this work clearly

shows an application of geometrical method to physical phenomena, against which Aristotle

argued. In Physics (II 193b22 - 194a12) he says that the holders of the theory of the forms (the

Platonists) are not justified in abstracting the objects of physics, “which are less separable

[abstractable] than those of mathematics.” He viewed branches such as optics, harmonics,

and astronomy as converses of geometry. “While geometry investigates physical lines but qua

physical, optics investigates mathematical lines, but qua physical, not qua mathematical.”

This apocryphal work, Problems of Mechanics is generally taken to be the initial

work on mechanics, for lack of most ancient records.28 Since the work looks like a ‘text’ book

it is most unlikely that it was produced in this ‘finished’ form without previous discussions

in more primitive form on the subject. This work is also important from the point of view

of a method which Greeks have developed, which is the method of reducing the unknown to

the known. The method was used and developed by Euclid (§1.2 page 39) and Archimedes

initially. Later this became one of the most profound methods of problem solving, which was

to become popular as the method of analysis and synthesis.

Some of the questions raised in Problems of Mechanics by [Aristotle] are:

1. Why are larger balances more accurate than the smaller?

2. Why is it that the radius which extends further from the centre is displaced quicker than

27Pappus in Mathematical Collection, writing about mechanics comments about the intellectual equipment
of Archimedes. He says that the science of mechanics consists of theoretical and a practical part. “The
theoretical part includes geometry, arithmetic, astronomy, and physics, while the practical part consists of
metal-working, architecture, carpentry, painting, and the manual activities connected with these arts. ... Now
some say that Archimedes of Syracuse mastered the principles and the theory of all these branches. for he is
the only man down to our time who brought a versatile genius and understanding to them all, as Geminus
the mathematician tells us in his discussion of the relationship of the branches of mathematics.” In Cohen
and Drabkin 1958, The Source Book of Greek Science pp. 183-185.

28Cf. Dugas 1955, A History of Mechanics p. 19.
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the smaller radius, when the near radius is moved by the same force?

3. Why is it that the exercise of little force raises great weights with the help of a lever, in

spite of the added weight of the lever?

Let us discuss his answer to the third question first, which is a more composite

case where the two former questions enter indirectly in the discussion. His answer begins by

asking the question that suggests the analogy between lever and balance.

Does the reason lie in the fact that the lever acts like the beam of a balance with
the cord attached below and is divided into two unequal parts?

The explanation by analogy is further worked out as follows in continuation to the question:

The fulcrum, then, takes the place of the cord, for both remain at rest and act
as the center. Now since a longer radius moves more quickly than a shorter one
under pressure of an equal weight; and since the lever requires three elements, viz.,
the fulcrum—corresponding to the cord of a balance and forming the center—and
two weights, that exerted by the person using the lever and the weight which is
to be moved; this being so, as the weight moved is to the weight moving it, so
inversely, is the length of the arm bearing the weight to the length of the arm
nearer to the power . The further one is from the fulcrum, the more easily will one
raise the weight; the reason being that which has already been stated, namely,
that a longer radius describes a larger circle. So with the exertion of the same
force the motive weight will change its position more than the weight which it
moves, because it is further from the fulcrum.29

The solution consists in many interrelated issues. First, the premiss that “the longer one

moves more quickly than the shorter one”, follows from an earlier proof that larger radii are

displaced quicker than the smaller radii, or the points farther from the center of a circle are

moved quicker by the same force and the larger radius is displaced quicker than the smaller.

Since balance has three basic elements in its structure, the chord and the two weights that

are isomorphic to the structure of the lever (the fulcrum and the weight to be moved and

the power exerted on the arm of the lever), more or less direct analogy is possible. Once the

analogy is achieved the relation obtainable is the principle of lever, as stated above (italicized

portion). However simple it may appear to our intuition, more logical ‘content’ is required

before realizing this analogy to the principle of lever.

Second, the analogy (isomorphism) between balance and circle has been established.

The chord by which a balance is suspended acts as the center, for it is at rest, and the

parts of the balance on either side form the radii.30 This analogy makes the first question
29From Cohen and Drabkin 1948, A Source Book in Greek Science p. 193. Our italics.
30Cohen and Drabkin, op.cit. p. 191–192.
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answerable. Since larger balance with larger arm moves more than a smaller balance with

smaller arm given same weight, and since larger movement is more easily perceived than

smaller movement, larger balances are more accurate (sensitive) than smaller ones.

Third, since the longer radius (the side of the lever where power is enforced) describes

a larger circle, less power is needed than the weight to be moved, in the proportion of the

lengths of the lever on either side of the fulcrum.

The method followed here is to reduce anything unknown to the properties of the

circle, which are better known. As stated above, initially balance has been reduced to the

circle, then the lever to balance. [Aristotle] writes:

The properties of balance are related to those of the circle and the properties of
the lever to those of the balance. Ultimately most of the motions in mechanics
are related to the properties of a lever.31

The method of successive reduction has been applied later by Archimedes and Hero of Alexan-

dria, who used the principles of lever to the five simple machines, the wheel and axle, lever,

pullies, wedge, and screws.

What is the basis of the reductions from one to another? [Aristotle] thinks that it

lies in the magical property of the circle.

Someone who would not be able to move a load without a lever can displace
it easily when he applies a lever to the weight. Now the root cause of all such
phenomena is the circle. And this is natural, for it is in no way strange that
something which is more remarkable, and the most remarkable fact is the combi-
nation of opposites with each other. A circle is made up of such opposites, for to
begin with it is made up of something which moves and something which remains
stationary.32

The cause of all phenomena is the circle because it is a combination of opposites. This

reminds us of what Aristotle (of Physics) says about what character should the principles

have?33 In this connection what Aristotle says should be discussed in detail, for what he says

provides a foundation for the development of our thesis too. Aristotle believes, just as other

thinkers of ancient Greece, that the principles should be contraries. In Physics (Bk.I, Ch-V.

188a 19-26.) Aristotle elaborates.

31Quoted from Problems of Mechanics in Dugas 1955, op.cit.
32Ibid , p. 19.
33Here the term ‘principle’ is used in the sense of basis, as in the usage: “DNA is the material principle of

inheritance.” Principle is that from which everything else would follow, and should not be confused with the
usage in which certain statements are regarded as principles. Though statements which are principles also
have this connotation of basis, but they are not regarded ‘causes’ of all other things. There is a sense in which
basic statements ‘cause’ other statements (consequences). Aristotle says that the antecedent and consequences
are like causal relationship. Despite the analogy the difference however needs to be acknowledged.
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All thinkers then agree in making the contraries principles, both those who de-
scribe the All as one and unmoved ... and those too who use the rare and the
dense. The same is true of Democritus also, with his plenum and void, both of
which exist, he says, the one as being, the other as not-being. Again he speaks
of differences in position, shape, and order, and these are genera of which the
species are contraries, namely, of position, above and below, before and behind;
of shape, angular and angle-less, straight and round.

Other outstanding examples of principles are odd and even, hot and cold, Love and Strife,

moist and dry. Though all of them identify their principles with contraries, they however

differ from one another, as we have seen in an earlier chapter, on what each one thought or

chose as the principle in their theory. He says that unlike his predecessors he has, in addition

to them, a reason to suppose that principles should be contraries. In continuation to the

above passage he provides the reasons:

It is plain then that they all in one way or another identify the contraries with
the principles. And with good reason. For first principles must not be derived
from one another nor from anything else, while everything has to be derived from
them. But these conditions are fulfilled by the primary contraries, which are not
derived from anything else because they are primary, nor from each other because
they are contraries.34

Aristotle, therefore, thinks that everything that comes to be by a natural process is either

a contrary or a product of contraries. For example, colors are regarded as intermediaries of

the contraries black and white. If the principle is either (about) black alone or white alone,

other colors cannot be caused from them, however if the principle contains black and white

all colors could follow from them as different products of contraries.35

Thus the necessary conditions for calling something a principle for [Aristotle] and

Aristotle, just as other Greek thinkers, is continuous in this presupposition that fundamental

principles must be contraries.

The origin of this belief appears to be rooted in certain other basic presuppositions.

As Aristotle himself says:

Our first presupposition must be that in nature nothing acts on, or is acted on
by, any other thing at random, nor may anything come from anything else, unless
we mean that it does so in virtue of a concomitant attribute.36

This passage again is highly relevant for any attempt to study genealogy of scientific knowl-

edge. The earlier part of the passage reflects a belief in conservation, and the latter part in
34Ibid.
35Ch.5, 188b 22-27.
36Ibid , 188a32-35.
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coextension of attributes. Here Aristotle is suggesting clearly that if causal or conservational

account is not obtainable, then concomitance of attributes should. The belief in the principle

of conservation is vital for studying variational phenomena such as motion. For studying

invariant things, at least apparently invariant, of different kinds, knowledge of concomitance

of attributes is essential. The passage shows the in built tension between the study of the

essences of individuals on one hand and the study of the ‘essences’ of invariance on the other.

The tension exists because the former leads to proliferation of individuals, while the latter

leads to unification of essences. One is the search for causal principles based on the princi-

ples of conservation, and the other is the search for taxonomic principles based on principles

of coextension. This again indicates, on the methodological front, the tension between the

method of taxonomy and the method of inversion. While the former investigations come out

with knowledge related to variational regularities in the world, the latter form of knowledge

comes out with compatibility of different ‘things’ stated as coextensional or coexistential reg-

ularities of the world. Aristotle must have noticed the problem, but we think that due to his

opposition to mathematical techniques and his obsession with deductive logic he could not

achieve any reconciliation.

Using the vocabulary of Aristotle, our central thesis can be stated thus: The prin-

ciples of nature should either be contraries, or be complexes of concomitant (compatible)

attributes, where the former kind are obtainable by the method of inversion and the latter

kind by the method of taxonomy.

After [Aristotle] remarkable developments took place in the school of Alexandria.

This school further developed the linkage between Aristotle’s tendency to study phenomena

at a local, as against, global level, and Plato’s tendency to idealize phenomena to geometrical

objects. We have seen in [Aristotle] how idealization of the balance, lever etc., have enabled

him to apply geometrical principles and thus achieve reduction of the unkown to the known.

That a marriage between the Platonic and Aristotelian approaches took place as far back as

[Aristotle] and Archimedes is significant because the popular understanding suggests that it

took place as late as 16th century in the hands of Galileo. Though Galileo also achieved a

similar synthesis in the case of his studies of the phenomena of motion, in the case of statics

and hydrostatics it took place soon after Aristotle.

The developments that took place in the school of Alexandria are significant on

many fronts. One of them is the emergence of the problem solving approach. [Aristotle]’s

work, let us recollect, was titled Problems of Mechanics, and its main objective is to find

explanations for specific mechanical phenomena already mentioned. This problem oriented
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(paradigmatic) science can be traced to Aristotle’s Physics, where several problems were

posed and explanations offered at local level. It was in that context, we have seen, a large

number of direct and inverse proportions stated between quantities, and most of them were

inductively arrived. In the school of Alexandria some of the problems raised by Aristotle

find ingenious solutions by means of the new methodology of mathematical physics. In this

school we find evidences for the birth of the experimental method. It was in this school that

Euclid composed the Elements, which became a symbol of Greek rationality. A generation or

so later, Archimedes had shown a general method applying mathematical analysis to physics,

and became the founder of mathematical physics. He has many mathematical discoveries to

his credit, such as the method of exhaustion, which is in essence same as that of the method

of integration of modern calculus.

It is not merely to provide a list of all the great inventions and discoveries that took

place in the school of Alexandria that these words of acclaim are included. Better accounts

can be found in books on history of science. Our interest here is to show that all these devel-

opments took place only after [Aristotle], who as already elaborated, gave a clear direction

to future investigations. Here we shall briefly describe how Archimedes’s contributions also

show the general features of scientific principles, which are inversely modeled. It is significant

to note that in this initial period when science was in the making, all the inverse models were

equilibrium models.

In his treatise On the Equilibrium of Planes Archimedes develops mainly two issues:

the principle of lever and the center of gravity. To illustrate our point the first three postulates

of the principle of the lever will be discussed briefly.

1. Equal weights at equal distances are in equilibrium, and equal weights at
unequal distances are not in equilibrium but incline towards weight which is at
the greater distance.

2. If, when weights at certain distances are in equilibrium, something be added
to one of the weights, they are not in equilibrium, but incline toward that weight
to which the addition was made.

3. Similarly, if anything be taken away from one of the weights, they are not
in equilibrium but incline towards the weight from which nothing was taken.37

These three postulates represent a model of equilibrium, which is nothing but an ideal case of

inversely ordered model. It is needless to say that equilibrium presupposes inverse relation.

The first postulate states the condition of equilibrium, and disequilibrium, in other words,

order and disorder. Since most phenomena that we perceive are presumed to be of the latter

kind, the task is to put forth the conditions of the ‘apparent’ disorder. The second and third
37T.L. Heath 1897, The Works of Archimedes, p. 189.



7.4. [Aristotle] and Archimedes 237

postulates state how the equilibrium can be disturbed, either by adding or by taking away

some weight, which are inverse operations. The effects are the same which ever way we do it,

because the change is explained by relativizing one with the other and not in absolute terms.

It is another distinguishing feature of science that its knowledge is based on principles of

relativity, which can not be stated without presupposing a model of equilibrium, or a group

of transformations inversely ordered.

Another instance where Archimedes applies the similar model of equilibrium, is in

the case of floating bodies. We are aware of the famous story of Archimedes’ solution of

the problem of Heiro’s golden crown. This problem is solved by understanding that different

substances have different specific gravities (relative densities) by which each substance can

be identified.

Two masses of the same weight [mass] one of gold another of silver do not pour out

the same amount of water when immersed in a jar filled to the very brim. Gold displaces a

smaller quantity than silver of the same weight. The difference is due to specific gravity, which

is characteristic of each substance. This is another instance of a conception that developed as

a result of relative, and not absolute, ‘weightage’ of different substances in the same medium.

This is also a paradigm instance of experimentation where certain conditions like medium,

weight etc., are held constant to understand ‘specific’ differences between substances. The

‘real difference’ of things, as characteristic features, can be understood in relation to others

and not in absolute terms is an important heuristic principle of science. The objectivity

claimed in science has always been relativized objectivity, never absolute.

A difference between Archimedes and [Aristotle] that needs to be pointed out is

that the latter’s analysis of the problem was in terms of the general laws of motion, while the

former’s analysis is based on static principles like equilibrium and the center of gravity. This

Archimedes achieves by eliminating factors like speed and the time taken while studying the

phenomena. That these factors throw no extra light on the problem and should therefore be

set aside, is an important methodological principle necessary for mathematization.

A few more observations are in order before we close this chapter on genesis of

scientific knowledge. It was known from common experience that with a lever, only a small

force has to be applied on the long arm in order to support a heavy weight on the short arm

or to move a big load . Thus the inverse correlation stated in this form is inductively obtained

between the length of the arm and force applied. But the solution consists in relating one side

with the other side in a symmetrical manner. This means that if one were to lift a small load

attached to the long arm of lever by applying force on the short arm of the lever, the force
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required would be more than the load. Technically we say that the mechanical advantage

would be less than one. Though no one would in actual life, unless for experimental reasons,

like to lift loads using this other ‘side’ of the inductively obtained principle, it is highly relevant

to suppose this counter-inductive side of the principle to achieve the ‘balance’ required for

stating an equation.38 Though it is known to us it is necessary to recollect that one of the

needs for an experiment arises only when actual experience is insufficient.

It is clear from the above account that the models of explanations so far obtained

are obtained from abstracting from our experience with instruments like balances. Models of

explanations once abstracted from the original context can find applications in contexts other

than the original, as mentioned already. This point is rather well understood and is often

discussed as a characteristic feature of any abstractions like concepts. But unlike ordinary

concepts, such as color concepts, where once understood the application of it becomes trivial,

every new application of constructive concepts is a discovery. When we find yet another

instant of red color, we don’t shout with insight and excitement ‘Eureka!’, because the concept

is directly linked to its instances. In the case of models, which we see are complex conceptual

structures, this is not the case. Application of one model to another phenomenon is a case

of discovery . It is discovery because the analogy between the model and the phenomenon

will become clear only after the interpretation of the phenomenon in terms of the elements

of the model is well understood. Which element of the phenomenon corresponds to which

element of the models can be grasped only if the analysis of the phenomena can be obtained

in similar terms as that of the model, which is essential for establishing an isomorphism

between phenomenon and the model.

38We are using the expression ‘counter-inductive’ in the specific sense mentioned above, which is to see the
consequence of the converse of inductively arrived inverse correlation. We are not clear whether this sense
has any relationship with Feyerabend’s use of the term. Cf. his 1978, Against Method: An Out line of an
Anarchistic Theory of Knowledge.



Chapter 8

A Study of Galileo’s De Motu

It is believed that the work, De Motu, which was not published by Galileo was

composed during the time that Galileo taught at the University of Pisa between 1589 and

1592. The manuscript contains an essay version and a Dialogue version, as well as a series of

brief notes on the subject.1

Due to the importance of the work for understanding the evolution of Galileo’s

thought we shall discuss most of the material in detail mainly to show that his reasoning is

a classic example of inverse reason. Despite differences with Aristotle he demonstrates the

possibility of arriving at the principles (causes) of nature that are ‘identical’ to statements

of contraries. Galileo has been regarded as the central figure in shattering the conceptual

scheme of Aristotle by proposing an alternative scheme. This study also demonstrates the

point that this conceptual transformation would not have taken place without inverse reason.

It is very important to say this here before we proceed further, that the set of problems they

are attending to are similar, though their solutions are radically different.

8.1 The Cause of Motion

In the first chapter Galileo clarifies (defines) the terms ‘heavier’ and ‘lighter’ in a

characteristically anti-Aristotelian way. We will be discussing in greater detail the notions of

heavier and lighter in another section (8.5), to contrast the thinking pattern of Aristotle and

Galileo. The vantage point from which this is done becomes clear in the first few chapters

of De Motu, though greater understanding will be achieved as we go further into the details

of other chapters. These terms are going to become the contraries of the principle (cause) of

1We are following Drabkin’s (1960) translation of the manuscripts edited and published by Antonio Favaro
in 1890. Cf. Drabkin’s introduction, p. 3.
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natural motion, and are therefore immediately relevant.

[W]e sometime say that a large piece of wood is heavier than a small piece of lead,
though lead, as such, is heavier than wood. And we say that a large piece of lead
is heavier than a small piece of lead, though lead is not heavier than lead.

These words could lead to confusion if it is not clear as to what is being said and from what

point of view . Galileo, therefore, thinks it is “necessary to settle this,” and “avoid pitfalls

of this kind”. Can there be a way of saying that something is heavier or lighter absolutely?

Galileo’s answer is ‘no’. Heaviness and lightness can however be defined relatively. It is

important to note that he in fact defines three notions, and not just two, viz., “equally

heavy”, “heavier” and “lighter” in the following way. As already stated it is a necessary

condition that any inverse order must contain at least three terms.

(1) Equally heavy: “[T]wo substances which, when they are equal in size [i.e., in volume],

are also equal in weight.”2

(2) Heavier: “[O]ne substance should be called heavier than a second substance, if a piece

of the first, equal in volume to a piece of the second, found to weigh more than the

second.”3

(3) Lighter: “[O]ne substance is to be considered lighter than a second substance, if a portion

of the first, equal in volume to a portion of the second, is found to weigh less than the

second.”4

The similarity of these statements with that of Archimedes, stated in the earlier chapter

(§7.4 page 236), can be readily seen. The first one in both cases is regarding the state of

equilibrium, and the other two are about the two possible variations of disequilibrium. The

three statements actually constitute one single principle, by means of which all effects are to

be explained with regard to differences in heaviness or lightness. This structure of a principle

of science allows one to explain invariance as a result of equilibrium, and variance as a result

of disequilibrium of opposites. We shall see that most crucial changes from Aristotle’s to

Galileo’s concepts take place due to the sort of principles that are inversely structured.

In the above definitions, heaviness has been defined in terms of weight. These

definitions therefore also make a conceptual distinction between weight and heaviness, which

later becomes the distinction between weight and mass.

2p. 10. All page references are to the Galileo’s text De Motu, unless otherwise specified.
3p. 14.
4p. 14.
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The most significant point to note is the method of selectively controlling one of

the parameters to understand the proportional relations between them. Here the volume of

the substances under comparison are controlled in the sense that they are kept constant in

all the cases. What is the methodological necessity of this? Since a change in volume effects

a corresponding change in heaviness, unless volume is kept constant no relative [objective]

comparison is possible. In common comparisons, since we do not bring in a third factor into

consideration the resulting judgements can be confusing.

So far we see two distinct influences on Galileo, one, that of the Atomists’ under-

standing of density, and two, of Archimedes’ principle of equilibrium. In the second chapter

he comments that Aristotle wrongly criticized the Atomists in De Caelo, Book IV. He ap-

provingly says of the latter that if there is a single kind of matter in all bodies, and heavier

and lighter bodies differ in the amount of matter in a given space, then (presuming that

the earth is spherical), since spaces in a sphere become narrower as we approach the center

and larger as we recede from the center, it is natural that earth (the element) would occupy

the center and other three elements, water, air and fire would occupy successively farther

from the center in that order. “It was therefore with prudence and justice,” with “complete

justice and with consummate wisdom” that nature determined respective places for the four

elements in proportion as the matter of each of those elements was rarer or denser and not

as Aristotle thought that different kinds of bodies will have different tendencies.

He thus arrives at a single principle of explanation for all kinds of bodies. In so far

as considerations of parsimony do enter in the organization of scientific knowledge, Galileo is

surely more scientific than Aristotle.

He ‘recedes’ further from Aristotle—the centre of learning—in his reworkings of

Chapter 2, version II. The more categorical terms “heavier” and “lighter” are less preferred

to relativized terms “heavier” and “less heavy” on the ground that nothing is devoid of

weight. Later in Chapter 12, he says that even fire, which is less heavy than all “will move

downward if air is removed under it, that is, if a void or some other medium lighter than fire

is left under it.” The other pair of categorical terms “downward” and “upward” have also

been relativized to “nearer the center” and “farther from the center”. Thus in Chapter 2, of

version II he says:

Up to now we have spoken of “the heavy and the less heavy” not of “the heavy
and the light”; and of “nearer the center and farther from the center,” not of
“downward and upward.” . . . Yet, if at times, out of a desire to use ordinary
language (for quibbling about words has no relevance to our purpose), we speak
of “the heavy and the light,” and of “downward and upward,” these expressions
should be understood as meaning “more and less heavy” and “nearer the center
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and farther from the center.

Having considered the natural order of the arrangement of bodies, Galileo considers the

question of what causes natural motion in Chapter 3. Both upward and downward motions

(i.e., going farther from the center and coming nearer to the center) are caused, according

to Galileo, by considerations of relative heaviness or lightness (lesser heaviness). Any change

contrary to the arrangement of nature causes motion. A main consideration that goes into

the argument is that the motion of bodies should not be studied independently of the medium

in which it takes place. Should this mean that there is no motion if there is no medium?

Surely not for Galileo, but for Aristotle ‘yes’. We shall shortly see that his position is that

though the heaviness of bodies is relative to the media, the actual heaviness can be measured

only in vacuum. The information that a body is heavier is not sufficient to determine the

character of its motion. The further information that at which place, in which medium, and

whether the medium is heavier or less heavy than the body, is also necessary.

Later he goes on to prove three principles of hydrostatics: [1] that bodies of equal

heaviness as the medium move neither upward nor downward - a state of equilibrium; [2]

that bodies lighter than the medium do not sink in it, and cannot be submerged totally, but

move upwards; [3] that bodies heavier than the medium get totally submerged and move

downwards. These principles are the same in structure as that of the propositions 3, 4, and

7 stated by Archimedes in On Floating Bodies5, except that Archimedes does not concern

himself with the movement of bodies upwards or downwards, for his concerns are purely with

statics and not kinematics or dynamics. In proposition 7, however, Archimedes speaks of

the descending of the heavier body. The structure of the statements stating the principles

shows beyond doubt that his discoveries are based on working in an idealized space created

by inverse order. Galileo frequently repeats statements that are similar in structure to the

principles of statics.

Galileo being interested in solving the problem of natural motion by using the model

developed by Archimedes, makes it a special point to use the terms denoting movements of

bodies in media. As noted earlier Archimedes systematically avoids any kinematic concerns

unlike [Aristotle].

5Proposition 3: Of solids those which, size for size, are of equal weight with a fluid will, if let down into
the fluid, be immersed so that they do not project above the surface but do not sink lower. . . .

Proposition 4: A solid lighter than a fluid will, if immersed in it, not be completely submerged, but part of
it will project above the surface. . . .

Proposition 7: A solid heavier than a fluid will, if placed in it, descend to the bottom of the fluid, and
the solid will, when weighed in the fluid, be lighter than its true weight by the weight of the fluid displaced.
Quoted, without proofs, from T.L. Heath (1897) op.cit. pages 255, 256, and 258 respectively.
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In this respect Galileo’s return to kinematic questions keeping in mind the model of

statics, which has achieved sufficient abstraction such that the mathematization of physical

phenomena would be possible. Despite its originality we shall regard it as a development

because we perceive it as the finding of new applications (discoveries) of the model already

invented or constructed by Archimedes. The Alexandrian school had not merely achieved

remarkable strides in mathematics, they had also used the experimental method. Whoever

would build models must ultimately come ‘down’ to controlled experiments to realize a ‘world’

constructed in thought. The general claim that it was only Galileo et.al., around the sixteenth

century, who mathematized natural science, can not be regarded as historically true, because

Archimedes has already achieved the objective in principle. This is however not to suggest

that Galileo’s contributions are unreasonably overestimated. What is being said is that the

‘seed’ was already in the “air”, and not in the “earth”, and the greatness of Galileo lies in

his ability to have picked it up and planted in a ‘rich soil’ such that it started developing.

The ‘rich soil’ corresponds to the philosophical, mathematical, experimental, reasoning that

nourished and supported it for further development.

Before going further on the subject, Galileo explains the analogy between the case

of a balance and the case of bodies moving naturally, by reducing the latter to the former.

Though he has been a student of and occupied a chair in mathematics, he has a desire to

make matters clear by conveying the message through physical analogies. His acute concern

for communication has very few parallels in intellectual history. His objective is “a richer

comprehension of the matters under discussion, and a more precise understanding on the

part of [his] readers” and he therefore restrains himself from using mathematical elucidation.

Coming to the analogy, he says in Chapter 6, whatever happens in a balance also

happens in the case of bodies moving naturally.

e o

bca

Figure 8.1: Structure of Balance

Let ab represent a balance, as shown in the figure 8.1, and c its center bisecting ab;

and let e and o be weights suspended from points a and b.

Now in the case of weight e there are three possibilities: it may either be at rest,
or move upward, or move downward. Thus if weight e is heavier than weight o,
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then e will move downward. But if e is less heavy, it will, of course, move upward,
and not because it does not have weight, but because the weight of o is greater.
From this it is clear that, in the case of the balance, motion upward as well as
motion downward takes place because of weight , but in a different way.

This is indeed a breakthrough, in the sense that it differs drastically from the Aristotelian

order of things. For Aristotle, motion upward takes place because of two reasons: one by

force, and otherwise naturally (i.e., without force) if the bodies are lighter or have no weight

like fire. Bodies go downwards because of weight, or if the body is by nature light, then

by force. For Galileo, having relativized the notion of heaviness and lightness, both take

place due to the same cause, namely, heaviness. Thus the analogy of the balance, which is

an idealized symbol of inverse order, systematically helps Galileo to break conceptually with

Aristotle. However, as he qualifies in the end, there is a difference in the way in which weight

causes motion in both cases. The difference lies in a careful distinction between internal and

external weight.

For motion upward will occur for e on account of weight of o, but motion down-
ward on account of its own weight .

This remarkable distinction, we think, must have become crucial for the development of both

the conceptions of inertia as an ‘internal’ cause, and force as an ‘external’ cause, without

which classical mechanics is inconceivable. This distinction would not have been possible

without the analogy of balance because the analogy constrains us to think of only one other

inverse factor that is affecting the motion, and not any of the numerous other logically possible

factors. Since the body that is moving upwards and the weight that is causing are joined

together by the lever, and because it is joined, the most immediate cause must be just the

other weight that is external, but joined, to the body. This example clearly shows how a

physical system can be obtained by inverse reason. If the joint is cut, not only the heavy

body, but also the lighter body would move downwards, due to their own weights. Therefore

downward natural motion must be because of its own weight.

Galileo did not arrive at the conclusion all at once. It took time because he started

with natural motion, and now he has to term it, so called, natural motion. He must have

achieved this break while analyzing the consequences carefully from the analogy. The analysis

in the initial version goes on as follows.

Continuing his considerations of balance he enunciates the general proposition that

the heavier cannot be raised by the less heavy. This follows from the principles of balance.

If water is less heavy than wood then wood cannot float on water. And, most importantly,
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wood goes up above the state of equilibrium because, water as a weight on the other side of

the balance, by analogy, is lifting or raising the piece of wood.

It is therefore clear that the motion of bodies moving naturally can be suitably
reduced to the motion of weights in a balance. That is, the body moving naturally
plays the role of one weight in the balance, and a volume of the medium equal to
the volume of the moving body represents the other weight in the balance.

Thus the other weight is not of the entire water, but only that portion of it which is equivalent

to the volume of the moving body. The motion therefore is caused by force, especially the

upward motion.

We have seen above that Galileo presents principles that are isomorphic to those of

statics. Another illustration is as follows:

[2] [I]f a volume of the medium equal to the volume of the moving body is heavier
than the moving body, and the moving body lighter, then the latter, being the
lighter weight, will move up. [3] But if the moving body is heavier than the same
volume of the medium, then, being the heavier weight, it will move down. [1]
And if, finally, the said volume of the medium has a weight equal to that of the
moving body, the latter will move neither up nor down, just as the weights in the
balance, when they are equal to each other, neither fall nor rise.6

In the reworking of this part Galileo reaches the unambiguous conclusion that no

upward motion is natural, i.e., it must be forced . Since all bodies have weight they all have

an internal cause, which is nothing but the weight (relative) for downward motion.7 In the

memorandum Galileo adds:

Downward motion is far more natural than upward. For upward motion depends
entirely on the heaviness of the medium, which confers on the moving body an
accidental lightness; but downward motion is caused by the intrinsic heaviness of
the moving body. In the absence of a medium everything will move downward.
Upward motion is caused by the extruding action of a heavy medium. Just as, in
the case of a balance, the lighter weight is forcibly moved upward by the heavier,
so the moving body is forcibly pushed upward by the heavier medium.8

That all upward motion is forced is a significant move away, if not against, Aristotle. In order

that one arrives at this statement we need to have rejected that some bodies levitate and

some gravitate by nature. In Aristotle’s scheme of things, if there existed only one element,

say fire, in the universe, it would have occupied that layer which is in proximity to the lunar

sphere, while in Galileo’s scheme of things it would reach the center of the universe, for fire
6The numbering is included to show the isomorphism with the earlier statements with the same number.
7p. 177.
8Notes 4 on p. 22.
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is, in this hypothetical case, the heaviest. That every body (every element) has weight and

that weight is relative are some of the initial steps Galileo takes away from Aristotle’s thesis.

Taking clues from the kind of motion that takes place in the case of balance he goes another

step forward, yet another step away from Aristotle, by proposing that all upward motion is

forced . In order to reject Aristotle’s thesis that wood in water rises up naturally, and propose

that in such a case the body (in this case wood) is being lifted up by another weight external

to the body, the analogy with the balance is crucial. Here lies the genius of Galileo. This is

no ordinary achievement, despite the simple logic.

The crucial contribution does not consist in saying that bodies with weight would

naturally move downward, for this was also the thesis of Aristotle. It also does not consist in

saying that lighter bodies go up because of force. Neither Galileo nor Aristotle would say this,

because for Galileo there is nothing like a light body, but only less heavy, and for Aristotle

not all upward motion is by force, it is by force only for heavier bodies. The contribution

consists in proposing that in the case of all bodies, irrespective of their heaviness, if they

move upwards the motion is forced, and the force is external to the body. Our concern here

is not to see whether what Galileo says is true or not, but to understand how the conceptions

are transforming.

Galileo continues his journey, being convinced that his path is right.

And since the comparison of bodies in natural motion and weights on a balance
is a very appropriate one, we shall demonstrate this parallelism throughout the
whole ensuing discussion of natural motion. Surely this will contribute not a little
to the understanding of the matter.9

8.2 The Cause of Change in Motion

Galileo has so far postulated the cause of ‘natural’ motion, which is heaviness or

relative density for both upward and downward motion. If the cause of motion is heaviness

then what would be the cause of change in motion? Since a change in cause should produce a

corresponding change in effect, a difference in heaviness should produce a difference or change

in motion.

Can there be kinds of change in motion, such as slowness and speed? Accordingly

should we need to postulate two separate causes, one for slowness of motion, and one for

swiftness of motion? For Aristotle slowness has one cause, namely, density of the medium

and swiftness has another, namely, rarity of the medium. Galileo, on the other hand, argued

9p. 23.



8.2. The Cause of Change in Motion 247

for one cause for both slowness and speed, just as he argued for one cause for both upward and

downward motions. This unification is a necessary move for what he would be finally driving

at, which is one cause for motion as well as for change in motion. This ultimate unification is

one of the revolutionary contributions of Galileo, which helped in the development of classical

mechanics.

What Aristotle says is that a body would be faster in air than in water, because

the former is more incorporeal (less dense) than the latter. (Note that Aristotle did describe

in relative statements. But he restricts relative description, as stated in the above chapter,

to the two media, water and air. His statements with respect to earth and fire are absolute.

See further discussion in 8.5 page 264) He also says that density of the medium impedes the

movement of a body.

We see the same weight or body moving faster than another for two reasons,
either because there is a difference in what it moves through, as between water,
air, and earth, or because, other things being equal, the moving body differs from
the other owing to excess of weight or of lightness.

Now the medium causes a difference because it impedes the moving thing, most
of all if it is moving in the opposite direction, but in a secondary degree even if it
is at rest; and especially a medium that is not easily divided, i.e. a medium that
is somewhat dense.10

From this it is clear that Aristotle believed in a twofold cause to the motion of the body, one

external to the body in the form of resistance of the medium, and other internal in terms of

the weight of the body. One of them (weight) to be accounted for the speed and the other

(density of the medium) for the slowness of the moving body. Galileo differs from him in a

very subtle but significant way.

Galileo says that both downward motion in the rarer media and upward motion in

denser media would be swifter, and upward motion in the rarer media and downward motion

in denser media would be slower. These descriptions, one can easily see, are transformations

obtained by appropriate changes of the opposite terms.

From the above arguments it follows that density of the medium does not always

decrease motion, because upward motion in denser media is swifter. Similarly rareness of

the medium causes swifter motion only in the downward direction and not in the upward

direction. Therefore the view of Aristotle that slowness of natural motion is due to the

density of the medium is incorrect because certain things such as an inflated bladder, which

when left in deep water (or any other denser medium), moves up swiftly. In a place where

10Physics 215a25-31.
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downward motion takes place with difficulty, an upward motion necessarily takes place with

ease: a canonical statement of inverse reasoning.11

Therefore, dismissing his [Aristotle’s] opinion, so that we may adduce the true
cause of slowness and speed of motion, we must point out that speed cannot be
separated from motion. For whoever asserts motion necessarily asserts speed; and
slowness is nothing but lesser speed. Speed therefore proceeds from the same
[cause] from which motion proceeds. And since motion proceeds from heaviness
and lightness, speed or slowness must necessarily proceed from the same source.
That is, from the greater heaviness of the moving body here results a greater speed
of the motion, namely, downward motion, which comes about from the heaviness
of that body; and from a lesser heaviness [of the body], a slowness of that same
motion. On the other hand, from a greater lightness of the moving body will
result a greater speed in that motion which comes about from the lightness of the
body, namely, upward motion.12

This is the method of unifying the causes that Galileo consistently, and (there is evidence to

show that he) consciously, adopts in solving problems of physics.

Compare the pattern of reasoning that leads him to infer that lightness is nothing

but less heavy and heaviness is a character of all bodies, with what he says here in the case of

motion and change of motion and the causes of motion and change of motion. Substituting

‘lightness’ with ‘slowness’ and ‘less heavy’ with ‘lesser speed’, ‘heaviness’ with ‘speed’ and

‘bodies’ with ‘motion’, the statement underlined above reads: Slowness is nothing but lesser

speed and speed is a character of all motion. This is a typically Galilean method of solving

the problem.

Though it falls short of finality, the remarkably Galilean turn, necessary for the

emergence of classical mechanics, takes place here. This has been made possible by a specific

pattern of thinking in terms of contraries. This pattern has an added advantage over, and is

not accessible to, the taxonomic way of thinking. The advantage is already exemplified above

in the previous section in finding the cause of natural motion. Here we have another instance.

The main point that is emerging again and again, which will continue later too, is that the

contraries cannot become two separate qualitatively or quantitatively distinct categories, but

belong to one scale. This point is entirely missing in Aristotle, despite the fact that he

shows awareness and inclination towards principles characterized by contraries as mentioned

before. He did not make the crucial move, the Galilean move, because he could not develop

his thinking on the basis of certain logical inferences based on the converse relation. We shall

elaborate.

11p.24
12pp. 24-25
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Aristotle realizes, as Galileo does, that media as well as weight affect the motion

of bodies. Galileo would not deny that corporeal (dense) nature of the media would resist

motion, but he would not accept it for all kinds of motion, because of the reasons mentioned

above. It may appear as though Galileo is introducing a new taxonomy unknown to Aristotle.

Was Aristotle wrong in taxonomizing kinds of motion? It appears not. Galileo does not

disagree with Aristotle on this point. He, however, disagrees with him on the corresponding

taxonomizing of the kinds of causes of motion. That is causes need not follow the same

taxonomic pattern of effects, and this for the very important reason that one cause is sufficient

to explain (by generating) all varieties and effects of (natural) motion. This is the crucial

aspect of the kind of systematization that is achieved by a cause that is inversely structured.

Suppose for every kind of effect there should exist a corresponding cause, then there should be

as many causes as there are effects. The simplicity and systematicity of causal explanation,

however, consists in reducing a large number of effects to a single unifying causal principle.

Galileo achieves this simplicity by adopting a pattern of thinking guided by the inverse

relation. Our thesis in this connection is that Aristotle has not achieved what Galileo achieved

with regard to the problem of motion because Aristotle has not ‘understood’ the potential of

the inverse relation.

If a medium is dense it would not continue to be so in relation to every media.

Water may be more dense than air, but it is less dense or rarer than sea water or milk. This

possibility suggests that something is dense or rarer in relation to, and only in relation to,

another thing. Surely it does not appear like a major clarification of the matter. But however

simple it may appear, Aristotle could not appreciate the point. Even if he was aware of the

point (surely Aristotle the logician must have been aware), he has not clearly made use of

the consequences of this realization while solving the problem of motion.

Secondly, one can easily see that the greater the density, the lesser the rarity and

conversely. That the realization of this sort of inverse relationship is crucial for the develop-

ment of scientific knowledge appears on the face of it a very silly point. But understanding the

meaning is one thing, and realizing the deeper consequences, another. Semantically (i.e., in-

tensionally) everybody would understand the mentioned inverse relationship between density

and rarity. But one can go beyond this mere understanding when one realizes that extension-

ally it is sufficient to talk in terms of either density or rarity, because they are interdefinable.

Talking in terms of both, extensionally speaking, does not add any more information than

what is said with one alone.

Consider, for example, the extension of all things that are dense, and let that be
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an ordered class of things according to the degree of density. Let there be another such

class of things except this time ordered according to the degree of rarity. Extensionally we

would have obtained the same class of things except in inverse order. Not so for Aristotle.

He believed that the elementa extrema, which are earth and fire, are absolutely heavy and

absolutely light. Earth and fire are the moving bodies with opposite directions in their

natural motion, and they move in the two elementa media, water and air. He also believed

that basic elements will have their absolute value of weight in their own places (natural

places), which are the corresponding spheres.13 Since Aristotle believed that there exists a

natural compartmentalization between things, he stuck to his taxonomic order,14 Galileo on

the other hand realized that there is no extensional difference, except in the order of things

which is inverse. Therefore, which ever way one would speak there would not in principle be

any difference. They are for him two ways of saying the same thing.

Though Aristotle uses each expression in terms of being more or less one quality,

such as “more incorporeal”, still he does not allow that the less of one would mean more of

another, i.e., less of the corporeal would mean more of the incorporeal. This appears to us

one of the major setbacks of Aristotle’s intellectual achievement. Galileo, however, relativizes

all the opposites with regard to motion systematically, and in a remarkable sense goes ahead

of Aristotle. For example, let us look at the passage of Aristotle from Physics quoted on

page 247.

Here Aristotle, like Galileo, correctly identifies the possible candidates of causes of

motion, namely, first, the difference in media, i.e., whether the media are denser or rarer;

second, excess of weight or lightness. However the two reasons become one in Galileo because

there exists a relation of direct proportionality between density and weight or rarity and

lightness for a unit volume of any body or medium, leading him to the definition of specific

weight. It is important to note that the definition is not arbitrary, but is a systematic

composition made by carefully following the proportionality relations between the quantities

of the bodies. The consequences of speaking in terms of specific weight go a long way firstly,

because the notion has rich information content, which is due to the proportional relations

between weight, density and volume of bodies. Secondly, it is a property that can be applied

to both the moving body and the medium, making it possible to use the structure (analogy)

13De Caelo Book IV.
14Inverse order is also possible across compartments (classes), but in such cases different mathematical

operations should be called for. In such cases mathematical composition and division would be in terms of
multiplication and division. I.e., in such cases geometrical proportionality would be applicable, while in those
cases where inverse order is among the objects of the same extension, then the mathematical relationship ob-
tainable and applicable would be arithmetic proportionality. This point is fundamental to the methodological
thesis proposed.
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of balance. As a result, both the body and the medium are analyzed by the same method.

Thirdly, as a consequence of the above, the application of the principles of statics, and then,

hydrostatics becomes possible.

Once the analogy with statics and hydrostatics is accomplished very useful propo-

sitions can be obtained due to the inverse structure’s generative power. For example, if a

body moves downwards in a medium with ‘difficulty’, i.e., by the application of force, as in

the case of wood in water, the same body in the same medium would move ‘easily’ upward.

And conversely, if a body moves downwards with ‘ease’, like stone left free in the air, the

same body in the same medium would move up only if external force is applied. If downward

motion is known to be swifter, then its upward motion will be slower. This is the structure

of a large number of passages in different contexts in the text of De Motu, indicating his

thinking pattern. This according to our understanding is one of the major differences be-

tween Aristotle’s and Galileo’s pattern of reasoning, and also that the latter’s achievement

consists precisely in applying this reasoning. The following passage throws more light on the

generative potential of inverse reasoning.

The body moves downward more swiftly in that medium in which it is heavier,
than in another in which it is less heavy; and it moves upward more swiftly in
that medium in which it is lighter, than in another in which it is less light. Hence
it is clear that if we find in what media a given body is heavier, we shall have
found media in which it will fall more swiftly. And if, furthermore, we can show
how much heavier that same body is in this medium than in that, we shall have
shown how much more swiftly it will move downward in this medium than in
that. Conversely, in considering lightness, when we find a medium in which a
given body will be lighter, we shall have found a medium in which it will rise
more swiftly; and if we find how much lighter the given body is in this medium
than in that, we shall also have found how much more swiftly the body will rise
in this medium than in that.

The passage also shows why and how inverse structures can make mathematization possible.

In order to calculate unknown quantity from known quantity we need in precisely what

terms the quantity varies with the other. Galileo attends to the problem of finding precise

quantitative relations between the relevant parameters so that it is possible to ascertain in

what ratio the speed of a body varies in different media. But before we go into that an

important point requires special mention, which is regarding the choice of heaviness and not

lightness as the cause of motion.

We have seen above that whether one speaks in terms of lightness or in terms of

heaviness, it makes no difference. However Galileo realizes that lighter means only less heavy

or less dense, and hence he chooses to speak only in terms of greater and less heaviness. But
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why heaviness, why not lightness? One major reason for choosing heaviness as the cause

of motion is because Galileo believed that all bodies, including fire, have weight.15 However

there are other epistemological reasons for this choice: that is, heaviness is given more directly

to experience and experiment than lightness.

In principle, it is indeed possible to give a converse account by choosing the other

possibility which would amount to speaking in terms of greater and lesser lightness. Opera-

tionally or logically, though not epistemologically, it makes no difference. The advantage of

speaking in terms of heaviness is that determining heaviness is more direct than determining

lightness, which is only a matter of practical consideration. It is easier for us to have stan-

dards of measurement that fall on the heavier side of the spectrum. Though investigations

typically begin by ‘fixing’ the more familiar and feasible side of the spectrum, later attempts

to make finer and finer instruments involves solving inverse problems, where in problems

would be worked out from the other side of the spectrum, for achieving greater certainty. It

is well known that indirect measurement gives finer results than direct measurement. It will

not be possible for us to get into this very important and relevant epistemological problem

in this essay, except for indicating that it suggests an interesting relationship between the

‘factual’ and the ‘theoretical’.

It may however help us to grasp the indicated sense intuitively from another context

which we understand relatively better. Given natural numbers—which may be considered

direct—and direct operators—like addition and multiplication—to begin with, it is possible

to construct symmetrical systems of numbers, like integers, rationals, reals, and complex

numbers by inventing inverse elements and inverse operators. The objective of the mathe-

matician in this case is to make all kinds of algebraic equations solvable. Here too there is no

logical necessity to start this constructive activity only from natural numbers; one might as

well start from a set of negative numbers, and the inverse operators subtraction and division

and from them construct the so called direct numbers and operators. However for at least

human beings about which we have a better knowledge, it is known to be easier to start

with what we call directly given ‘things’, and then indirectly obtain the inverses. Since it

is sufficient to choose either of them as fundamental, we can as well choose that which is

familiar and feasible to our experience and experiment.

15See Ch. 12.
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8.3 The Ratio of Speed

Already Galileo has laid a secure foundation for the construction of an alternative

interpretative framework to Aristotle’s, for the investigation of the problems of motion. Some

of the essential aspects of the peculiarly Galilean pattern of thinking have been illustrated,

and the role of the inverse relation in binding the structure of thinking highlighted. However

many specific and deeply held beliefs of Aristotelian science need to be demolished before

erecting the alternative structure. Galileo’s attempt we believe was to construct at the same

location. It has been held by many authors, such as Kuhn, that the two paradigms have two

corresponding and independent ‘worlds’ of their own. We see the possibility of a contrary

argument that they are alternatively constructed views of the same world and therefore to

be constructed at the same location.

In the eighth and ninth chapters Galileo advances a large number of arguments,

most of them in the form of what we today call thought (gedanken) experiments, against

Aristotle’s thesis that there is a direct proportionality between largeness (greater weight) of

a body and its speed in natural motion. The structure of the arguments further strengthens

our thesis that Galileo’s reasoning is a classic case of inverse reasoning.

Aristotle’s view as presented in De Caelo16 is as follows:

A given weight moves a given distance in a given time; a weight which is as
great and more moves the same distance in a less time, the times being in inverse
proportion to the weights. For instance, if one weight is twice another, it will take
half as long over a given movement.

Similar statements asserting that larger and/or heavier bodies move quicker have been made

in De Caelo 290a1-2; 277b4-5; 309b11-15; 394a13-15; and in Physics 216a13-16. The law as

stated is also believed to be true of the weightless element fire. He says in De Caelo:17

The greater the mass of fire or earth the quicker always is its movement towards
its own place.

It is clear from these statements that ratios of the speeds of their motion downwards for

earth, and upwards for fire, is proportional to the sizes of the bodies. Since Aristotle had

no notion of mass, we interpret the term ‘mass’ as ‘massive’ or ‘larger’ or ‘voluminous’. We

have already seen how Aristotle’s usage was ambiguous and confusing because of the lack of

a clear distinction between mass (or heaviness in Galileo’s sense) and weight.

16273b30-274a2
17277b4-5
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Critical of Aristotle’s view, Galileo says that his views are ridiculous and that they

are ridiculous is “clearer than day light”. But Galileo is wrong to say this, because the mistake

of Aristotle is pretty involved. The process of moving from what appears to immediate

perception to what holds true after meticulous and involved constructive reasoning, is not

very easy. However Galileo may be right if one were to say that if one looks at the phenomenon

from the framework that Galileo has adopted then we would get a “clearer than day light”

picture of things. Since there is a difference in the interpretative framework of Galileo and

Aristotle it cannot be said that the latter’s mistake would be clear to anybody. After all

centuries had to pass to realize Aristotle’s ‘mistakes’. Galileo, we think, uses often and more

often than necessary, the phrase “who will ever believe that” or “who would ever say that”,

when its known rather clearly that the Peripatetics did indeed say and believed just that,

and their views remained dominant for centuries. See for example, the passage in full:

For who will ever believe that if, for example, two lead balls, one a hundred times
as large as the other, are let fall from the sphere of the moon, and if the larger
comes down to the earth in one hour, the smaller will require one hundred hours
for its motion? ... Or, again, if a very large piece of wood and a small piece of
the same wood, the large piece being a hundred times the size of the small one,
begin to rise from the bottom of the sea at the same time, who would ever say
that the large piece would rise to the surface of the water a hundred times more
swiftly?

While Aristotelians would not hesitate to say for objects that are twice as large as the other,

they certainly would hold on for a while before responding to questions of this kind, where the

proportion of variation is too large.18 Galileo uses this method of amplifying the variation in

order to correspondingly amplify the effects that follow, so that certain observations that are

difficult at small variations would become visible at large variations. This method of glorifying

both the truth and falsity must have certainly worked well against the Aristotelians. We shall

see more such instances on the way.

Could one believe contrary to what the Aristotelians said, without reasoning this

way? It is difficult to think so, because unless one is motivated enough these reasons are

difficult to come by. The Aristotelian mistake is not ‘childish’, the expression that Galileo

uses more than once, and it appears like a rather natural mistake for anyone who believed in

a hypothesis based on induction, and not based on rigorous reasoning, which is to reduce the

unknown to the known. For Galileo, things appear clearer than daylight because he could

achieve such a reduction, of the unknown case of natural motion to the known case of balance

and hydrostatics. Since this reduction is not an easy task and is far from self evident, we
18Compare Simplicio’s responses to these questions in The Two New Sciences.
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think, Galileo’s remarks are a bit too rash. Galileo, however, did not publish this work, and

remarks of this sort are evidently deleted in his published works.

Let us return to the substantial arguments Galileo provides against and in favor of

his thesis. Before we do that let us also note the symmetrical pattern of Galileo’s reasoning

in the above quoted passage. Here, as elsewhere, he works out both possibilities of ‘natural’

motions. Whatever he would assert for one would be asserted for the other by inverting the

conditions, displaying the symmetry of the argument. In the following thought experiments

too, this point recurs again and again.

Galileo’s view, contrary to Aristotle’s, is that bodies of the same kind i.e., made

of the same substance, whatever be their size move at the same rate in the same same

medium. To help understand this rather surprising conclusion Galileo asks us to conduct a

series of thought experiments. It should be pointed out that while this statement of Galileo

is sufficiently surprising, this remains a statement that plays the role of only a ‘rung’ of the

ladder he climbed, for ultimately he arrived at a far more surprising statement, viz., that all

bodies irrespective of their kind, and irrespective of their size fall at the same rate in vacuum

(or void). We shall see how he, step after step, arrives at this conclusion. It did not take him

less than four decades to reach from one rung to the next.

His arguments in the form of thought experiments have the following pattern. First,

he considers the case of a body moving downwards and upwards in a changing medium,

and second, the case of a combination of two bodies moving downwards and upwards, and

finally, on the basis of the above two arguments he proves that Aristotle’s thesis leads to

contradiction.

First: Consider a medium like water on which one large and another small piece of

wood are afloat. Imagine that the medium is gradually made successively lighter, so that

finally the medium becomes lighter than the wood and both pieces slowly begin to sink. Now

following the principles of hydrostatics “who could ever say that the large piece would sink

first or more swiftly than the small piece?”

As already argued both the pieces being made out of the same material (wood)

they would have the same heaviness (specific gravity), which is same for wood whatever be

its size. since heaviness is the only determining factor of natural motion, as already argued,

there would be no difference in their motion.

For, though the large piece of wood is heavier than the small one, we must never-
theless consider the large piece in connection with the large amount of water that
tends to be raised by it, and the small piece of wood in connection with the cor-
respondingly small amount of water. And since the volumes of water to be raised
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by the large piece of wood is equal to that of the wood itself, and similarly with
the small piece, those two quantities of water, which are raised by the respective
pieces of wood, have same ratio to each other in their weights as do their volumes
... i.e., the same ratio as that of the volumes of the large and the small piece of
wood. Therefore the ratio of the weight of the large piece of wood to the weight
of the water that it tends to raise is equal to the ratio of weight of the small piece
of wood to the weight of the water that it tends to raise.19

Consider now the case of a large piece of wax floating on water and suppose by

some means, such as mixing some sand with the wax, it be made successively heavier than

water so that it would begin to sink slowly. If we take say one-hundredth part of that wax,

considering the principles of hydrostatics, who would ever believe that the piece would not

sink at all or would sink hundred times more slowly than the whole piece of wax?

In the former experiment the medium was considered for change and in the latter the

floating body. This aspect of experimental science, changing the parameters symmetrically,

but successively, reveals an important truth about a law of nature. In this case it is illustrated

that it is the difference of specific weight that matters, and not whether the difference is with

the body or with the medium. The source of difference does not matter, what matters is

the difference. Working out the argument by varying the conditions symmetrically now on

the ‘left side’ and now on the ‘right side’ of the balance, and obtaining an invariant result

remains a remarkable feature of Galileo’s thinking pattern, also true of the structure of

scientific thinking. If the situation can be reduced to the balance, then how and why should

it matter which side is considered for variation. Having shown that it is the difference in

specific weight that matters and not the source of difference, he goes to the next step of the

argument.

Second: Consider there are two bodies of which one moves more swiftly than the

other, then the

combination of the two will move more slowly than that part which by itself moved
more swiftly, but the combination will move more swiftly than that part which
by itself moved more slowly.20

For example, take the combination of a piece of wax and an inflated bladder both moving

upward from deep water.

[W]ho can doubt that the slowness of the wax will be diminished by the speed of
bladder, and, on the other hand, that the speed of the bladder will be retarded by
the slowness of the wax, and that some motion will result intermediate between
the slowness of the wax and the speed of the bladder?21

19pp. 27-28.
20p. 28.
21p. 29.
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ab

Figure 8.2: Thought Experiment

Similarly the combination of wood and bladder in air will fall more slowly than

the wood alone, but more swiftly than the bladder alone. Similarly when two equal bodies

moving equally come close and join together they would not double their speed, contrary to

Aristotle, for the same reason. It follows from this that the same kind of body, whatever be

its weight should move at the same speed. Galileo having also shown what happens when two

bodies combine, goes on to prove that Aristotle contradicts himself. The proof is as follows:

Suppose there are two bodies of the same material, the larger a, and the smaller
b, and suppose, if it is possible, as asserted by our opponent, that a moves [in
natural motion] more swiftly than b. We have, then, two bodies of which one
moves more swiftly. Therefore, according to our assumption, the combination
of the two bodies will move more slowly than that part which by itself moved
more swiftly than the other. If, then, a and b are combined, the combination
of a and b is larger than a is alone. Therefore, contrary to the assertion of our
opponents, the larger body will move more slowly than the smaller. But this
would be self-contradictory.22

Thus Galileo demonstrates that Aristotle’s view is incorrect. The next step is to finally refute

Aristotle’s thesis that the ratio of the speeds of a body in different media is equal to the ratio

of the rareness of the media. Galileo’s correction consists in applying the principle discovered

earlier that for ‘natural’ motion we need to consider not the densities and weights of the body

and medium as such, but in relation to each other, which means the excess of weight of one

medium over the weight of the moving body is to the excess of the other medium over the

weight of the body.23

Therefore, if we wish to know at once the [relative] speeds of a given body in two
different media, we take an amount of each medium equal to the volume of the
body, and subtract from the weights [of such amounts] of each medium the weight
of the body. The numbers found as remainders will be to each other as the speeds
of the motions.

This, then, is the method suggested by Galileo for calculating the speeds. This might appear

like a minor difference, and just a correction. However, the consequences of this discovery
22p. 29.
23p. 34-35.
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for the later developments of the subject are immense. It was with the help of this incorrect

law that Aristotle argues quite convincingly against the Atomists’ thesis of void. Since his

arguments are based on this wrong presupposition, among others, if it were not refuted

convincingly the possibility of motion in the void, which is indispensable for the emergence

of classical mechanics, would not have been possible.

The crucial point upon which this correction is based needs a special mention. The

crucial point is that the mathematical operation suggested by Galileo is subtraction, and not

division. Because what needs to be known is the excess of weight. But one can say this in two

ways, one way is to speak in terms of how many times a body is more or less than the other.

Aristotle does this, while Galileo employs the other alternative, which is to speak in terms of

how much more or less. We shall come back to this question later, after elaborating Galileo’s

arguments in favor of motion in the void. At this place, a comment may however be made

that to know a proportionality relation is one thing, and to know what kind of (geometrical

or arithmetic) proportionality to apply, is another. For proper application of a mathematical

operation here Galileo was again guided by the the inverse structure of the balance. Though

enough has already been said about this, it needs to be repeated in every context, and in this

context specially, because it demonstrates a point of the thesis that inverse structure (such

as that of a balance) can also suggest what mathematical operation to apply.

One can see this . . . in the weights of a scale. For if the weights are in balance,
and an additional weight is added to one side, then that side moves down, not
in consequence of its whole weight, but only by reason of the weight by which it
exceeds the weight on the other side. That is the same as if we were to say that the
weight on this side moves down with a force measured by the amount by which
the weight on the other side is less than it. And for the same reason, the weight
on the other side will move up with a force measured by the amount by which
the weight on the first side is greater than it.24

These considerations suggest that Galileo was not a born antagonist of Aristotle’s theory,

but it was by systematic reason that Galileo turned against his theory. He began as a

student of Aristotelian mechanics, started renovating in the same conceptual space, and

introduced necessary changes that initially enter as correction factors. But when the process

was gradually extended to domains nearer the ‘boundary of the world’, total inversion of the

framework takes place, when the changes that occur are no longer corrections of the building,

but involve radical restructuring.

One such radical change, highly crucial for the later developments of classical me-

chanics, takes place when the above line of argument was extended successively.
24p. 39.
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Does every object has a weight of its own, an exact weight? He believed that it

would have weight of some value. But an object may lose all its weight or develop negative

weight depending on in which medium the body is present. Galileo reaches the conclusion

that objects can have their exact weight only in a void. The path of this discovery is simple,

but takes place by gradual elimination of the medium altogether.

Now from what has been said it should be clear to everyone that we do not have
for any object its own proper weight. For if two objects are weighed, let us say,
in water, who can say that the weights which we then obtain are the true weights
of these objects, when, if these same objects are weighed in air, the weights will
prove to be different from those [found in water] and will have a different ratio to
each other? And if these objects could again be weighed in still another medium,
e.g., fire, the weights would once more be different, and would have a different
ratio to each other. And in this way the weights will always vary, along with
the differences of the media. But if the objects could be weighed in a void, then
we surely would find their exact weights, when no weight of the medium would
diminish the weight of the objects.25

Aristotle could not have arrived at this conclusion because of several impeding suppositions.

One major contrary supposition of Aristotle was that the elements would have their proper

weight in their own places, according to the natural arrangement, while for Galileo things

would have improper weight in their natural places. Second, he believed that if void existed,

motion would take place instantaneously, while for Galileo pure and unimpeded motion takes

place only in a void . Third, the medium is supposed as an indispensable cause of motion,

while for Galileo the role of the medium ceases to be an impeding factor of ‘real’ motion. All

these conceptual transformations, however, took place as illustrated above by the systematic

application of inverse reasoning, and is in not a result of a flash of insight or a conjecture or

even a dream.

Considering the often realized fact that the laws of classical mechanics would apply

more accurately in a space devoid of a number of material hindrances, the discovery, in

the first place, that only in such a void objects would behave exactly and would appear

in their purity will be significant. Based on the method of calculating speeds of bodies

in different media Galileo proves that motion is possible in the void, and it does not take

place instantaneously, but in time. This argument is for Galileo a ‘spring board’ that has

thrown him into a space up above all that is ‘earthy’ so that most of his later thinking could

take place in a space where material hindrances mattered little while investigating the exact

relationship between crucial parameters of motion. His excessive involvement so far with the

25p. 40.
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medium gradually vanishes, helping him to say finally that all objects irrespective of their

size and shape would fall at the same velocity. This, being a remarkable and quite surprising

discovery is crucial for understanding the conceptual transformation. We shall discuss it in

the following section.

8.4 Motion and Weight in the Void

The modern science of mechanics is unthinkable without the idea of motion in a

vacuum or void. Though the idea of the void is not new, it is kept away from discussion due to

Aristotle’s aversion towards it and the conjoint atomistic world view. As already mentioned,

Galileo was intellectually influenced by both the mathematical method of Archimedes and

the world view of the Atomists. He specially argued against Aristotle’s position that void and

motion in the void are impossible. Galileo’s line of attack also demonstrates where Aristotle

went wrong. We shall first brief Aristotle’s argument.

Aristotle’s thesis is that “void in so far as it is void admits no difference.”26 In media

like air and water bodies move because they admit difference (bodies are offered resistance

differentially), and since void admits of no difference motion is impossible: “not a single thing

can be moved if there is void.”27

[H]ow can there be natural movement if there is no difference throughout the void
or the infinite? For in so far as it is infinite, there will be no up or down or
middle, and in so far as it is a void, up differs no whit from down; for as there
is no difference in what is nothing, there is none in the void (for the void seems
to be a non-existent and a privation of being), but natural locomotion seems to
be differentiated, so that the things that exist by nature must be differentiated.
Either, then, nothing has a natural locomotion, or else there is no void.28

Aristotle’s assumption that differences in the speed of a body arise from differences

in density (rarity) of the medium has already been proved false by Galileo. It is also proved

that ratio of the speeds of the motion of the body is not equal to the ratio of the rareness or

density of the media. Aristotle also held a view that no number can have the same relation

to another number as a number has to zero. In this view lies the major problem.

We see the same weight or body moving faster than another for two reasons,
either because there is a difference in what it moves through, as between water,
air, and earth, or because, other things being equal, the moving body differs from
the other owing to excess of weight or of lightness.

26214b34.
27214b30.
28215a5-13.
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Now the medium causes a difference because it impedes the moving thing,
most of all if it is moving in the opposite direction, but in a secondary degree
even if it is at rest; and especially a medium that is not easily divided, i.e. a
medium that is somewhat dense.

A, then, will move through B in time C, and through D, which is thinner,
in time E (if the length of B is equal to D), in proportion to the density of the
hindering body. For let B be water and D air; then by so much as air is thinner
and more incorporeal than water, A will move through D faster than through B.
Let the speed have the same ratio to the speed, then, that air has to water. Then
if air is twice as thin, the body will traverse B in twice the time that it does D,
and the time C will be twice the time E. And always, so much as the medium is
more incorporeal and less resistant and more easily divided, the faster will be the
movement.

Now there is no ratio in which the void is exceeded by body; as there is no
ratio of 0 to a number. For if 4 exceeds 3 by 1, and 2 by more than 1, and 1 by
still more than it exceeds 2, still there is no ratio by which it exceeds 0; for that
which exceeds must be divisible into the excess + that which is exceeded, so that
4 will be what it exceeds 0 by + 0. For this reason, too, a line does not exceed a
point—unless it is composed of points! Similarly the void can bear no ratio to the
full, and therefore neither can movement through the one to movement through
the other, but if a thing moves through the thickest medium such and such a
distance in such a time, it moves through the void with a speed beyond any ratio.
For let F be void, equal in magnitude to B and to D. Then if A is to traverse and
move through it in a certain time, G, a time less than E, however, the void will
bear this ratio to the full. But in a time equal to G, A will traverse the part H
of D. And it will surely also traverse in that time any substance F which exceeds
air in thickness in the ratio which the time E bears to the time G. For if the
body F be as much thinner than D as E exceeds G, A, if it moves through F, will
traverse it in a time inverse to the speed of the movement, i.e. in a time equal
to G. If, then, there is no body in F, A will traverse F still more quickly. But
we supposed that it traverses F in an equal time whether F be full or void. But
this is impossible. It is plain, then, that if there is a time in which it will move
through any part of the void, this impossible result will follow: it will be found
to traverse a certain distance, whether this be full or void, in an equal time; for
there will be some body which is in the same ratio to the other body as the time
is to the time.

To sum the matter up, the cause of this result is obvious, viz. that between
any two movements there is a ratio (for they occupy time, and there is a ratio
between any two times, so long as both are finite), but there is no ratio of void
to full.29

This long passage reflects the structure of Aristotle’s thinking. It also reflects the state-of-the-

art of mathematics at his period. Galileo’s argument begins by correcting Aristotle’s mistakes

in calculation. His argument briefly is that one should be applying arithmetic proportions

and not geometric proportions as Aristotle did, in this case. Aristotle’s argument is valid
29215a25–216a8.
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Figure 8.3: Galileo’s and Aristotle’s Calculations on Fall of Bodies

(deductively speaking). But that is not sufficient for natural science. The premises must

be true. His premise that the ratio of the speeds were equal to the ratio of the rareness of

the media, in the geometrical sense, is incorrect, because the speeds depend on arithmetic

ratio. Therefore Aristotle’s conclusion that no motion is possible in the void would not follow.

Galileo proves Aristotle wrong in the following thought experiment (See figure 8.3.)

Suppose a body a whose weight is 20, and two different media, bc and de. Let the

volume of a, b and d be equal, and their weights 20, 12, and 6 respectively. The ratio of the

speed of body a in the medium bc and de will be equal to the excess of weight of a over the

weight of the medium bc to the excess of weight of d to the weight of the medium de, which is

8 : 14. If the speed of a in bc is 8, its speed in de will be 14. Aristotle would have calculated the

ratio as 8 : 16, because bc is doubly denser than de. Since Galileo calculates the arithmetical

difference, the difference in speed is lesser than Aristotle’s calculation. It therefore follows

that the speed does not increase at the same rate even if there is a similar rate of decrease in

the density of the medium. Realizing this apparently minor point of difference is more than

vital for the development of the modern science of motion, where medium does not play an
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essential role in the motion of bodies, because the impeding effect of the medium is less than

what Aristotle expected. To see how Galileo extrapolates these simple calculations to bring

back the void into physics, let us calculate the ratios of speeds by decreasing the values of

the the weight of de gradually, keeping the rest of the things constant.

If the medium de has the weight 4, for the unit volume, the speed of a in de according

to Galileo would be 16, and the difference between the speeds of a in bc and de would be 8,

which means only twice as fast as in bc. Aristotle’s calculation for the same situation shows

that it would be thrice (12/4) (See the table in the figure 8.3). When we decrease the weight

of de further to 3, the difference in speed will be 9 for Galileo, but for Aristotle four times.

When the weight of de is further decreased to 2, Aristotle would calculate a difference of

six times that a’s speed in bc than de, and at a further decrease it becomes 12 times. And

finally one more step and Aristotle would be in great trouble, because when the weight of de

becomes 0, Aristotle gets at what is impossible to comprehend, 20/0. For a similar situation

Galileo gets a convenient 8 : 20.

On one hand Aristotle uses his calculations to abandon motion in void, which was

presumed to be of zero weight. On the other hand Galileo goes to a radical conclusion that

the pure form of motion takes place only in the void. It is thus very clear how eventually for

Galileo the medium became an impeding and accidental factor, while for Aristotle it was an

essential factor of motion. What was held to be necessary became accidental, and what was

held to be impossible became not only possible, but became the purest possible. A systematic

application of inverse reason eventually inverted our notion of what motion is—it is radical

enough to call it revolutionary.

The above proof also brings home the point that it is one thing to know that

two quantities are inversely proportional and quite another thing to know the quality of

proportionality, i.e., whether arithmetic or geometric. Aristotle’s charge that it is impossible

for one number to have the same relation to another number as a number has to zero, has

been proved by Galileo as untenable. In conclusion to this proof, Galileo says:

Therefore, the body will move in a void in the same way as in a plenum. for in
a plenum the speed of motion of a body depends on the difference between its
weight of the medium through which it moves. And likewise in a void [the speed
of] its motion will depend on the difference between its own weight and that of
the medium. But since the latter is zero, the difference between the weight of the
body. And since the latter is zero, the difference between the weight of the body
and the weight of the void will be the whole weight of the body. And therefore
the speed of its motion [in the void] will depend on its own total weight.30

30p. 45.
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It becomes clear from this passage that Galileo considers the void as a medium with zero

weight. As noted earlier, things weigh proper in the void because in any media other than

the void they will always be lighter.

In De Motu Galileo thought that different bodies would fall in the void at different

rates, though irrespective of their size or weight.

For example, in the case of a body whose weight is 8, the excess over the weight
of the void (which is 0) is 8; hence its speed will be 8. But if the weight of a
body is 4, the excess over the [weight of the] void will, in the same way, be 4; and
hence its speed will be 4. finally, using the same method of proof in the case of
the void as we used in the case of the plenum, we can show that bodies of the
same material but of different size move with the same speed in a void.31

This conclusion is not correct which Galileo realizes much later. In Discorsi (First Day) he

reaches the correct conclusion that all bodies, irrespective of weight, density and size fall

in the void at the same rate. To arrive at this conclusion Galileo has to correct another of

his premises. In De Motu he thought that in natural fall bodies would fall at a constant

speed, while later he corrects this to say that they undergo uniform acceleration. Both these

corrections are very vital for the further development of the science of motion. We shall see

below, how even these developments took place as a result of inverse reasoning reaching a

‘finale’ as far as natural fall of bodies is concerned.

8.5 Heavy and Light

A very good example to know the difference between Aristotle’s and Galileo’s think-

ing patterns is to study their notions of heavy and light. This case shows quite glaringly

exactly where the differences between Galileo and Aristotle lie. One may wonder how im-

portant the notions of heavy and light are in a discussion which is on motion. In fact lack

of clarity on these notions remained a major intellectual hurdle for the development of the

subject of motion. Galileo realizes the importance of these pair of ideas and spends a lot

of his energy to correct the views of Aristotle. However, we will see that gradually Galileo

eliminates the term ‘heaviness’ and begins to talk in term of force, as he proceeds further. A

terminological clarification: In this section the term ‘heavy’, should be understood as weight,

and not as heaviness as defined by Galileo in the first section.

Aristotle defines the notions absolutely heavy and absolutely light as follows:

In accordance with general conviction we may distinguish the absolutely heavy,
as that which sinks to the bottom of all things, from the absolutely light, which

31pp 48-49.
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is that which rises to the surface of all things. I use the term ‘absolutely’, in view
of the generic character of ‘light’ and ‘heavy’, in order to confine the application
to bodies which do not combine lightness and heaviness. . . . But the heaviness
and lightness of bodies which combine these qualities is different from this, since
while they rise to the surface of some bodies they sink to the bottom of others.
Such as air and water.32

Thus for Aristotle the distinction is absolute. It is also clear that he defines them in terms of

the direction of motion, which it should be noted is only in the vertical component. We have

already discussed Galileo’s early thinking on this matter and noted that heaviness becomes

the cause of motion. (To begin with Galileo also concentrated on motion in the vertical

component, but gradually he shifts his attention to the horizontal component. In this shift

we will see below how inverse reason plays the central role in yet another revolutionary

transformation.) In the above section we have shown how Galileo arrives at the belief that

pure form of motion is possible only in void. His view on the weight of bodies is that bodies can

be properly weighed only in the void, which contrasts well with that of Aristotle’s, according

to whom air and water are sometimes lighter and sometimes heavier, but are absolutely heavy

only in their own proper place. Aristotle thought that all bodies are either made of the matter

that is light or that is heavy or those that contain both kinds of matters, light and heavy. The

one which contains the light kind of matter is fire, and the one that contains the heavy kind

is earth. Air and water contain both kinds. Air has more of the light kind than water and

water has has more of the heavy kind than air.33 Therefore all the elements except fire have

weight and all but earth lightness. Earth being absolutely heavy always moves downwards,

and fire being absolutely light moves always upwards. Since heavy/light are defined in terms

of motion, and motion determines the position of different bodies, everything has a fixed

‘natural’ position on earth.34

Aristotle, as is well known, develops his ideas on this subject by rejecting the Atom-

ists’ thesis that there existed only one kind of matter and heavy and light are to be understood

relatively. Referring to this Aristotle says:

Our predecessors have not dealt at all with the absolute use of the term, but only
with the relative. I mean, they do not explain what the heavy is or what the light
is, but only the relative heaviness and lightness of things possessing weight.35

We have already observed that Galileo is returning to the Atomists’ manner of relativistic

32De Caelo Bk.IV, Ch.4,311a16–24. Also cf. 308a28–31, 311b16–18.
33De Caelo Bk.IV, Ch.5, 22-25.
34See quotation on 266
35308a10–13.
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thinking. Plato also held a relativistic position with respect to heaviness and lightness.36

Aristotle is explicitly arguing against the Atomists’ and Plato. His absolutist manner of

thinking prevents him from seeing the possible, which he in fact goes on to rule of as as

impossible. For example, he says:

[S]ince a multitude of small atoms are heavier than a few large ones, it will follow
that much air or fire is heavier than a little water or earth, which is impossible.37

Galileo’s arguments demonstrate precisely this that it is indeed possible to bottle air that

weighs more than Aristotle’s weight. This shows clearly where Aristotle has gone wrong.

Aristotle certainly recognized the importance of contraries, for he thought that

all changes are to be explained either in terms of changes to a contrary or in terms of

something intermediate. However, he continued to oppose the Atomists’ thesis by asserting

that contraries are absolute, and he allowed relative usage of the terms to refer only to the

intermediate stages.38 He further believed that the changes are not due to any accidental

factors:

the thing altered is different from the thing increased, and precisely the same
differences hold between that which produces alteration and that which produces
increase. . . . Now, that which produces upward and downward movement is that
which produces weight and lightness, and that which is moved is that which is
potentially heavy or light, and the movement of each body to its own place is
motion towards its own form.39

These are the reasons given in support of his views, and against the Atomists’ views.

Galileo argues against Aristotle’s thesis by applying the principles of hydrostatics.

Water in its own place and air in its own place cannot have any any weight because such a

situation is nothing but a state of equilibrium. This is because neither air nor water moves

downward or upward in its own region. Therefore, Galileo says that “they should not be called

either heavy or light”.40 Bodies would have their proper weight only in the void and not in

their own place. Aristotle applies his absolute idea of lightness in this argument knowing fully

well that the Atomists’ notion was relative. Therefore, Galileo says that Aristotle should have

framed his argument that fire in its own place has weight, and a large amount of it in its own

36Aristotle cites Plato’s Timaeus: “One use of the terms ‘lighter’ and ‘heavier’ is that which is set forth in
writing in the Timaeus [63 C.], that the body which is composed of the greater number of identical parts is
relatively heavy, while that which is composed of a smaller number is relatively light.” 308b5–9.

37310a11–13.
38Bk.IV, Ch.4.
39310a26–29.
40p. 55
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place would weigh more, and where fire has no weight (as in air) a large amount of it would

have more lightness.

Aristotle’s criterion of heaviness is that a heavy body should be seen falling down.

But for Galileo a large amount of water can be heavier than a small amount of water without

water showing any downward motion. Because downfall is determined by relative density and

not weight. In this sense Galileo could find an independent cause of motion that escapes the

circularity of Aristotle’s definition of heavy and light. For Aristotle, that which is heavy goes

downwards and that which goes downwards is heavy, and similarly for lightness. Aristotle’s

mistakes, therefore, arise from his inability to apply the worthier notion of density, which is

invariant with respect to the size of things. The notion of density is of course impossible

without relativistic thinking.

8.6 Discovering the Horizontal Component

The structure of balance and general principles of statics helped Galileo to reconcile

the problems that arise when, like Aristotle, contraries are considered as absolute and as

different genera. There are other cases of motion that also are analogous to the structure

of balance such as the motion on inclined planes and the motion of a pendulum. Each of

these cases upon analysis help in understanding a few more dimensions of motion that are

otherwise not so easy to isolate from the complex fabric of phenomena. It is vital, for the

emergence of the modern science of motion, to make possible the understanding of a certain

special situation which can be characterized as a neither-nor-state. The state of equilibrium

in a balance is one such state, where the weights move neither upward nor downward.

Just as bodies fall down ‘naturally’ they also roll down on any inclined surface. The

case of the inclined plane is thus just another case of natural motion. But experimentally it

is a very efficient and easy means of studying motion, specially in relation to measuring time

and distance. This is because it takes more time to roll down on an inclined plane than in

a vertical fall. The delay would make it easier to observe and measure, otherwise difficult,

the relationship between velocity, time and distance. Galileo claims that his studies are the

first on this problem; “The problem we are going to discuss has not been taken up by any

philosophers, so far as I know.” He states the problem as follows:

The problem is why the same heavy body, moving downward in natural motion
over various planes inclined to the plane of the horizon, moves more readily and
swiftly on those planes that make angles nearer a right angle with the horizon;
and, in addition, the problem calls for the ratio [of speeds] of the motions that



268 Chapter 8. A Study of Galileo’s De Motu

take place at the various inclinations.41

His approach toward solving this problem is based on the earlier understanding that

the force necessary to lift a body upwards is equal to the force it tends to move downwards.

This is another typical example of the method of solving the problem by reducing the unknown

to the known.42 The known aspect of knowledge consists in statics and geometry, and the

unknown aspect is the problem at hand, viz. the motion of a body on an inclined plane. His

mature mathematical mind is at work in solving this problem. He says what the solution of

the problem constists in.

.....................................................................................................................................................................................................................................................................................................................................................................................................
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Figure 8.4: Inclined Planes

If . . . we can find with how much less force the heavy body can be drawn up on
line bd than on line ba, we will then have found with how much greater force the
same heavy body descends on line ab than on line bd. And, similarly, if we can
find how much greater force is needed to draw the body upward on line bd than
on be, we will then have found with how much greater force the body will descend
on bd than on be. But we shall know how much less force is required to draw the
body upward on bd than on be as soon as we find out how much greater will be
the weight of that body on the [inclined] plane along bd than on the plane along
be.

We shall present the procedure followed by Galileo in full detail.

Consider a balance cd, with center a, having at point c a weight equal to
another weight at point d. Now, if we suppose that line ad moves toward b,
pivoting about the fixed point a, then the descent of the body, at the initial point
d, will be as if on line ef . Therefore, the descent of the body on line ef will be
a consequence of the weight of the body at point d. Again, when the body is at
s, its descent at the initial point s will be as if on line gh; and hence the motion

41p. 63.
42p. 63.
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Figure 8.5: From Balance to Inclined Planes

of the body on gh will be a consequence of the weight that the body has at point
s. And again, at the time when the body is at point r, its descent at the initial
point r will be as if on line tn; hence the body will move on line tn in consequence
of the weight that it has at point r.

If, then, we can show that the body is less heavy at point s than at point d,
clearly its motion on line gh will be slower than on ef . And if, again, we can
show that the body at r is still less heavy than at point s, clearly the motion on
line nt will be slower than on gh. Now it is clear that the body exerts less force
at point r than at point s, and less at s than at d. For the weight at point d just
balances the weight at point c, since the distances ca and ad are equal. But the
weight at point s does not balance that at c. For if a line is drawn from point
s perpendicular to cd, the weight at s, as compared with the weight at c, is as
if it were suspended from p. But a weight at p exerts less force than the [equal]
weight at c, since the distance pa is less than distance ac. Similarly, a weight
at r exerts less force than an [equal] weight at s: this will likewise become clear
if we draw a perpendicular from r to ad, for this perpendicular will intersect ad
between points a and p. It is obvious, then, that the body will descend on line ef
with greater force than on line gh, and on gh with greater force than on nt.

But with how much greater force it moves on ef than on gh will be made
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clear as follows, viz., by extending line ad beyond the circle, to intersect line gh
at point q. Now since the body descends on line ef more readily than on gh in
the same ratio as the body is heavier at point d than at point s, and since it is
heavier at d than at s in proportion as line da is longer than ap, it follows that
the body will descend on line ef more readily than on gh in proportion as line
da is longer than pa. Therefore the speed on ef will bear to the speed on gh the
same ratio as line da to line pa. And as da is to pa, so is qs to sp, i.e., the length
of the oblique descent to the length of the vertical drop. And it is clear that the
same weight can be drawn up an inclined plane with less force than vertically, in
proportion as the vertical ascent is smaller than the oblique. Consequently, the
same heavy body will descend vertically with greater force than on an inclined
plane in proportion as the length of the descent on the incline is greater than the
vertical fall.

At each point on the descent the body is considered as if it is on an inclined plane.

His proof shows that the body will become less and less heavier as it descends. This proof

evidently makes use of the principles of lever: equal weights balance at equal distances; and

unequal weights will balance at unequal distances. Which would mean that the weight of

the body at s could balance c only at q, and cannot balance either at p or at d. Therefore

it is clear that the inverse relation of unequal weights and the distances from the fulcrum

of balance has been applied to get the desired result. We can determine or calculate the

unknown only if the known and the unknown are related inversely.

He also assumes in this proof that the conditions are ideal (“incorporeal”) and

no accidental resistance would be caused by the roughness of the body or inclined plane

or by the slope of the body.43 Though Galileo would ultimately apply his knowledge to

corporeal things, all his thinking takes place under ideal conditions, and hence his assertions

are counterfactuals.

Having obtained a method of measuring the force required to overcome any given

weight on an inclined plane, he extrapolates this to arrive at very important results. It

follows from the results that any body on a plane parallel to the horizon will be moved by

the smallest force, a force less than any given force.44 Galileo proves this as usual by analogy

with balance. Any weight rigidly suspended from the center of a balance would move and

raise whatever little be the force exerted upon any side of the balance at equilibrium. The

state of the horizontal plane is a neither-nor-state. He deduces the result as follows:

[1] A body subject to no external resistance on a plane sloping no matter how
little below the horizon will move down [the plane] in natural motion, without the
application of any external force. . . . [2] And the same body on a plane sloping

43p. 65.
44pp. 65–66.
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upward, no matter how little, above the horizon, does not move up [the plane]
except by force. [3] And so the conclusion remains that on the horizontal plane
itself the motion of the body is neither natural nor forced.45

This conclusion undoubtedly anticipates the principle of inertia. We have also noted earlier

how similar descriptions were given for weights in a balance and floating bodies, which move

neither up nor down. All these are different physical states reducible to a state of equilibrium

or neither-nor-states. In all these cases we see that such a state was obtained by a composition

of two equal but oppositely acting forces. Hence the equilibrium state is an effect of a complex

cause.

Consequently, the taxonomic manner of thinking, prevalent in Aristotelian physics,

finds no place in Galilean explanations. Galileo successively eliminates most of the di-

chotomies introduced by Aristotle and demonstrates by way of erecting an alternative model

of scientific thinking according to which the contraries are not to be regarded as classifying

criteria, but as covarying factors in a physical system. While Aristotle was looking for one

cause for each kind of effect, Galileo is looking for one composite relation that would explain

a set of possible effects. In this process, Galileo could not only eliminate ambiguities and

inconsistencies in Aristotelian science, but achieved a greater degree of parsimony.

The significance of the neither-nor-states in science is undoubtedly great. Without

visualizing such a state the principle of inertia could not be stated. The cementing factor in

composing the forces to arrive at an equilibrium is the inverse relation between the forces.

Thus though initially Galileo started dealing with motion with the vertical com-

ponent, his attention did shift towards the horizontal component. In this shift, as we have

seen, the main guiding force is the model of balance. In De Motu, however, he did not re-

sort to formulating various problems possible on the horizontal motion. The explanation for

this could be due to the world order which continues to be geocentric. In order to consider

the horizontal component seriously it is necessary that the world order be Copernican. He

resolves the problems on this plane in a later work in Dialogues Concerning the Two Chief

World Systems, which cannot be covered here.

So far Galileo has not considered the problem of so called forced motion. Ultimately

Galileo gives up the distinction between the traditional dichotomy between forced and natural

motion, though he continues to use the terms ‘forced’ and ‘natural’. The real breakthrough

came much later in his life, when he correctly understood the proportionality relation between

time and velocity. But the final results would not have been possible without the much

45p. 66, italics ours. The numbers are included to match with the three possible states that can be generated
from a model of balance.
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needed conceptual cleansing which took place in De Motu. We shall see in the next section

how Galileo handled the problem, anticipating many concepts in the process. And most

importantly inversion continues to play the main role in the process.

8.7 Projectile Motion

Galileo’s analysis of the problem of projectile motion proceeds more or less in the

above pattern. He has already shown that the medium plays only an accidental role in motion

and that motion is shown possible even in the void. Therefore he believes that when a body

is thrown up, the motive force from the hand of the projector is transmitted to none other

than the projectile itself. Let us recall that Aristotle believed that the force is transmitted

to the medium, and not to the body.(§7.3 page 227) Hence the problem is: “What is that

motive force which is impressed by the projector upon the projectile?”46

In the case of natural motion a body goes up because it is lighter than the medium.

Galileo takes a clue from the logic of hydrostatics, and says that since the body is moving up

in a projectile motion, in this case too the body must be becoming lighter. He proposes that

the motive force makes the body lighter. Galileo speaks here as if some invisible ‘substance’

enters into or comes out of the body, making it now lighter, and now heavier. He says it is like

heat depriving the coldness of a metal when heated.47 The analogy is with the corresponding

inverses: heat is to lightness and coldness is to heaviness. The change that is taking place is

one of transformation (“alterative motion”) of some inherent quality, though temporarily.

The body . . . is moved upward by the projector so long as it is in his hand and is
deprived of its weight; in the same way the iron is moved, in an alterative motion,
towards heat, so long as the iron is in the fire and is deprived by it of its coldness.
Motive force, that is to say lightness, is preserved in the stone, when the mover is
no longer in contact; heat is preserved in the iron after the iron is removed from
the fire. The impressed force gradually diminishes in the projectile when it is no
longer in contact with the projector; the heat diminishes in the iron, when the fire
is not present. The stone finally comes to rest; the iron similarly returns to its
natural coldness. Motion is more strongly impressed by the same given force in
a body that is more resistant than in one that is less resistant, e.g., in the stone,
more than in light pumice; and, similarly heat is more strongly impressed by the
same fire upon very hard, cold iron, than upon weak addition less cold wood.48

The motive force is said to be something that can be preserved in the projector which indeed

is an anticipation of the notion of energy . This observation gets additional support from the
46p. 78.
47pp. 78–79.
48p. 79, italics ours.
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very important correlation made in the above passage between the denser bodies like stone,

and their ability to take more motive force from the projector.

This fact might appear contrary to what we experience, because we can move a

feather more easily than a stone. Galileo has an answer:

But the fact is that the lighter the body is, the more is it moved while it is in
contact with the mover, but, on being released by the mover, it retains for only a
short time the impetus it has received. This is clear if someone throws a feather,
using as much force as if one had to throw a pound of lead. For he will more
easily move the feather than the lead, but the impressed force will be retained in
the lead for a longer time than in the feather, and he will throw the lead much
farther. If it were the air that carried the projectile along, who would ever believe
that the air could carry the lead more easily than the feather? We see therefore
that the lighter a thing is, the more easily is it moved; but the less does it retain
the impetus it has received.49

By paraphrasing the last sentence we get: the greater the mass of the body the greater will

be its capacity to retain impetus (motive force). This relationship could have led Galileo

to a great discovery had he pursued it further to measure this correlation. He could have

discovered in the process either kinetic energy or momentum or both. It is easier for us

to say these things now, retrospectively, but several other factors of both a mathematical

an experimental kind are involved in the actual discovery of the notion of momentum by

Descartes and of kinetic energy by Leibniz. The famous debate between Descartes and

Leibniz over the issue of which of the quantities is the proper measurement for the quantity

of motion is a classic illustration of the point that the ambiguity in the usage of terms is not

an ordinary mistake that can be corrected if one is merely attentive enough.50 This comment

also applies to Galileo’s ambiguous usage of the terms ‘force’, ‘motive force’ ‘impetus’ etc.

The imparted force is called lightness, and it “will render the body in motion light

by inhering in it”.51 Talking in terms of lightness and heaviness may be confusing in every

context. Galileo shows awareness of this problem. To avoid confusion he makes a distinction

between “natural or intrinsic weight” and “preternatural” or “accidental” lightness52. Natural

weight is that which is retained after the projectile returns back, and preternatural lightness

is that which is temporarily inherent in the body when it is in projectile motion. He says in

analogy with floating bodies that the projectile’s “natural and intrinsic weight is lost in the

same way as when it is placed in media heavier than itself.”53

49p. 82, italics ours.
50Cf. Max Jammer 1967, ‘Energy’ in The Encyclopedia of Philosophy Edited by Paul Edwards. Volume-II,

pp. 511–517.
51p. 80.
52p. 80–81.
53p. 81.



274 Chapter 8. A Study of Galileo’s De Motu

Wood, too, becomes so light in water that it cannot be kept down except by
force. And yet, neither the stone nor the wood loses its natural weight, but, on
being taken from those heavier media, they both resume their proper weight. In
the same way, a projectile, when freed from the projecting force, manifests, by
descending, its true and intrinsic weight.54

This problem which Galileo is trying to clarify disappears completely when ultimately he sees

the possibility of giving up the distinction between natural and forced motion. The analogy

with hydrostatics helps him in the process.

This discussion on projectile motion is also an illustration of how Galileo is over-

coming the anthropocentric views of commonsense (also of Aristotle) by balanced reasoning

with opposites. Feathers driven away by the wind, and the ‘appearance’ of the movement of

water waves, created when a stone is thrown in a still pond, will not confuse Galileo, as they

did Aristotle who arrived at the false conclusion that the medium pushes the objects. As

discussed in §6.10 page 195, one of the necessary conditions of objectivity is to externalize

the standards of measurement. Galileo makes use of the possibility of obtaining a ‘balance’

by opposing quantities such as heavy/light, heat/cold, etc., so that an independent system

is constructed. In all the instances discussed above, Galileo has been trying to isolate and

externalize a system for subsequent analysis.

The initial idea of analyzing projectile motion in terms of loss and gain of weight

continues to function when Galileo argues against Aristotle’s views on the falling body.

8.8 Initial Study on Acceleration

In the Chapter 19 Galileo achieves some very important results that reflect the

coherent nature of his thinking pattern. In this chapter he finally dissolves the distinction

between ‘natural’ and ‘forced’. He argues against Aristotle that the entire path of motion of

projectile is one continuous process despite what we actually see. He also applies a symmet-

rical argument, in the sense that he first solves the problem for the fall of bodies and then

says that the same applies to the body shooting up by simply reversing the description of the

former case.55 Almost every statement of the following argument is animated by the model

of balance.

What are the necessary conditions for moving a body upwards?

For a heavy body to be able to be moved upward by force, an impelling force

54Ibid .
55p. 88.
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greater than the resisting weight is required; otherwise the resisting weight could
not be overcome, and, consequently, the body could not move upward.56

This is a simple truth that follows a priori from the model of a balance. The impelling force is

applied when the object is projected upwards, and soon after that the force gets continuously

diminished.

[I]t will finally become so diminished that it will no longer overcome the weight
of the body and will not impel the body beyond that point.57

This is the point when the body is neither moving up nor moving down, because the impressed

force is so diminished that it equals that of the weight of the body. That is “the body will be

neither heavy nor light.” Did the body then achieve an equilibrium such that motion would

stop at that instant? It will not, because “the impressed force characteristically continues to

decrease.” As a result “the weight of the body begins to be predominant, and consequently

the body begins to fall”. Here he explains why the motion is slower at the beginning of fall.

Yet there still remains, at the beginning of this descent, a considerable force
that impels the body upwards, which constitutes lightness, though this force is
no longer greater than the heaviness of the body. . . . Furthermore, since that
external force continues to be weakened, the weight of the body, being offset by
diminishing resistance, is increased, and the body moves faster and faster.

This is also the cause of the acceleration of motion. Galileo mentions that much before him

Hipparchus gave a similar account of the process, which he came to know from Alexander’s

writings.58 The description is so appealing that it is very difficult to find objections to

this. However, Galileo attends to an objection allegedly made by Alexander that the above

account attends to only forced motion. What about natural fall that does not follow an

opposite forced motion? Galileo argues that this case requires no new explanation.

[W]hen a stone, which had been thrown up, begins to move down from that
extreme point at which equilibrium occurs between impelling force and resisting
weight (i.e., from rest), it begins to fall. This fall is the same as if the stone
dropped from someone’s hand. . . . For when the stone is at rest in someone’s
hand, we must not say that in that case the holder of the stone is impressing no
force upon it. Indeed, since the stone presses downward with its own weight, it
must be impelled upward by the hand with a force exactly equal, neither larger
nor smaller. . . . Therefore a force that impels upward is impressed on the stone
by the hand or by whatever else controls the hand, and this force is exactly equal
to the weight of the stone that tends downward.

56p. 89.
57Ibid.
58p. 90.
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. . . For in this case, too, when it leaves its [instantaneous] state of rest, it leaves
having an [upward] force [impressed on it] equal to its weight. Hence it is for the
same cause that, just as in the latter type of [natural] motion [i.e., preceded by
forced motion], so in the former [i.e., not preceded by forced motion], the body
moves slowly at the beginning.59

This argument is not misguided by what one merely observes. This is an excellent example of

applying a model to explain a particular instance. Though Galileo has no knowledge of how

to measure the impressed force etc., the model in its pure form is more or less complete. The

statement that nothing would fall freely without a preceding impressed force, undoubtedly

anticipates the notion of potential energy. Thus what appears as a free fall is actually a

result of a preceding event that imparted an impressed force (potential energy) in the body,

and hence a free fall is in continuation with forced motion. As a result of this symmetrically

structured model in his thought, Galileo could ultimately make the following statement.

You can therefore see how well propositions that are true fit in with one another.
And from this review anyone will easily be able to understand that these are really
not two contrary motions, but rather a certain motion composed of a forced and
a natural motion.60

Thus ultimately the synthesis of the contraries is achieved. He further says that the lightness

imparted to the body changes into heaviness in the course of a projectile motion, and this is

a single continuous motion.

So far, then, are these motions from being contraries, that they are actually
only one, continuous, and coterminous. Hence also the effects which flow from
these causes cannot be rightly called contraries, since contrary effects depend on
contrary causes. Hence the upward motion cannot rightly be called contrary to
the ensuing downward motion—both of which motions proceed from motion [i.e.,
change] in the mixture of lightness and heaviness. And from this it can easily be
deduced that [an interval of] rest does not intervene at the turning point [i.e.,
from upward to downward motion].61

We claim that this mixture of contraries is what we otherwise call the covariance of the

parameters in a system or physical state. In the specific example of projectile motion given

above, a modern physicist would have put the matter in terms of kinetic energy and poten-

tial energy which are inversely proportional, and the system constitutes a covariance of these

quantities. This is a typical manner in which the inverses are composed together into a single

system, and only such models provided successful explanations to the phenomena. This entire
59p. 91.
60p. 93. Italics ours.
61p. 94. Italics ours.
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account given above is an illustration of how the principle of included extremes—the funda-

mental principle of inverse reason—animates the mind of Galileo as against Aristotle who was

solely regulated by the principle of excluded middle and the principle of non-contradiction—

the fundamental principles of deductive logic. Aristotle would classify a given motion as

either natural or forced, while Galileo has reached a stage where he can describe without

contradiction a state of motion that is neither natural nor forced.

Galileo could not bring the solution of the problem of falling bodies to a ‘climax’ in

De Motu. The work is also not free of mistakes. Some of them he corrected later, and some

remained. It took him almost another three decades of serious thinking to make his most

remarkable discoveries, namely, the law of ‘free’ fall, the principle of relativity, and composi-

tion of horizontal and vertical components of motion describing the path of a projectile. In

the next section we will complete the path to discovery of the law of free fall, which has been

published in the Dialogues Concerning Two New Sciences.

8.9 The Discovery of the Law of Free Fall

In the above account from De Motu we have interpreted Galileo’s thinking pattern

as illustrative of inverse reason, guided by the principle of included extremes. This might

appear an altogether post hoc study of Galileo’s style of reasoning. However Galileo was not

only aware that the method he was following involves the synthesis of contraries, but also

proposed in a normative tone what the nature of the investigation should be and at what

point reason should enter into the investigation. Salviati, the mouth piece of Galileo says on

the first day:

If contraction and expansion [condensazione e rarefazzione] consist in contrary
motions, one ought to find for each great expansion a correspondingly large con-
traction. But our surprise is increased when, every day, we see enormous expan-
sions taking place almost instantaneously. Think what a tremendous expansion
occurs when a small quantity of gunpowder flares up into a vast volume of fire!
Think too of the almost limitless expansion of the light which it produces! Imag-
ine the contraction which would take place if this fire and this light were to reunite,
which, indeed, is not impossible since only a little while ago they were located
together in this small space. You will find, upon observation, a thousand such
expansions for they are more obvious than contractions since dense matter is more
palpable and accessible to our senses. We can see wood and see it go up in fire
and light, but we do not see them recombine to form wood; we see fruits and
flowers and a thousand other solid bodies dissolve largely into odors, but we do
not observe these fragrant atoms coming together to form fragrant solids. But
where the senses fail us reason must step in; for it will enable us to understand the
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motion involved in the condensation of extremely rarefied and tenuous substances
just as clearly as that involved in the expansion and dissolution of solids.62

This illustrates his thinking style. If a body is losing weight then there must be that contrary

phenomena where the body would gain weight. If a body is sinking in water, then imagine

a media other than water where the body would begin to float. If a quantity is successively

diminishing in a process, imagine of that quantity which at the same time is increasing. If

there is a quantity progressively increasing in one direction, think of another quantity that

would progressively increase in the opposite direction. If some thing continuous to remain

in a state without variation, it must be in the state of equilibrium where the contraries are

invariantly at work. If by fact we know one side of the process, we can construct by reason

the other side of the process. The belief in complete reversibility and symmetry of the world

order is the only guiding principle of scientific construction. The models thus created are

the models where the contraries coexist or covary, strictly following the principle of included

extremes.

Soon after the above passage the discussion is focused on the proof that all bodies

fall at the same rate. This counterintuitive discovery is again a result of inverse reason.

The first step of the argument is to prove Aristotle’s view that “a heavier body does not

move more rapidly than a lighter one provided both bodies are of the same material” wrong.

This argument is already contained in De Motu, which we have presented in §8.3 starting

on page 256. There the argument mainly consists in proving that Aristotle’s view leads him

to contradiction. But Simplicio, who argues for Aristotle in the Dialogue, expresses disbelief

that “a bird-shot falls as swiftly as a cannon ball”,63 and Sagredo, the third interlocutor,

requests Salviati to explain how “a ball of cork moves with the same speed as one of lead”.64

Salviati then describes the method of approaching the result.

Having once established the falsity of the proposition that one and the same body
moving through differently resisting media acquires speeds which are inversely
proportional to the resistances of these media, and having also disproved the
statement that in the same medium bodies of different weight acquire velocities
proportional to their weights . . . I then began to combine these two facts and to
consider what would happen if bodies of different weight were placed in media of
different resistances; and I found that the differences in speed were greater in those
media which were more resistant, that is, less yielding. This difference was such
that two bodies which differed scarcely at all in their speed through air would, in
water, fall the one with a speed ten times as great as that of the other. Further,

62Two New Sciences, p. 60.
63Ibid p. 64.
64Ibid p. 68.
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there are bodies which will fall rapidly in air, whereas if placed in water not only
will not sink but will remain at rest or will even rise to the top: for it is possible
to find some kinds of wood, such as knots and roots, which remain at rest in water
but fall rapidly in air.65

. . .

[I]n a medium of quicksilver, gold not merely sinks to the bottom more rapidly
than lead but it is the only substance that will descend at all; all other metals
and stones rise to the surface and float. On the other hand the variation of speed
in air between balls of gold, lead, copper, porphyry, and other heavy materials is
so light that in a fall of 100 cubits a ball of gold would surely not outstrip one of
copper by as much as four fingers. Having observed this I came to the conclusion
that in a medium totally devoid of resistance all bodies would fall with the same
speed.66

If the differences in speed are more in denser media, then according to inverse reason, the

differences in speed will have to be lesser in rarer media like air. And if it is void, a medium

with zero density, no difference should be observed. This is the reason that led him to the

discovery that in a void, all bodies irrespective of their weight, size or shape, would fall at

the same rate.

Since Galileo has no equipment with which to obtain a total vacuum to demonstrate

his findings the truth of his claim, therefore he gives plausibility arguments.

Since no medium except one entirely free from air and other bodies, be it ever
so tenuous and yielding, can furnish our senses with the evidence we are looking
for, and since such a medium is not available, we shall observe what happens in
the rarest and least resistant media as compared with what happens in denser
and more resistant media. Because if we find as a fact that the variation of speed
among bodies of different specific gravities is less and less according as the medium
becomes more and more yielding, and if finally in a medium of extreme tenuity,
though not a perfect vacuum, we find that, in spite of great diversity of specific
gravity [peso], the difference in speed is very small and almost inappreciable, then
we are justified in believing it highly probable that in a vacuum all bodies would
fall with the same speed.67

The kind of observations in support of his claim suggests that Galileo did not

construct idealized systems without taking inputs from experience. This demonstrates his

strength which lies in balancing empirical observations with mathematical reasoning. This

further supports our earlier claim (§2.1 page 48) that he is neither a Platonist nor an Aris-

totelian. The data available to him comes from only keen observations, but loaded with

65Ibid, p. 68.
66Ibid , p. 72.
67Ibid, p. 72.
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reason, and his experimental observations are not real experiments performed in closed or

controlled conditions.

The result is undoubtedly counterintuitive. Therefore experimental proof is

necessary.68 As already mentioned, performing such experiments was practically impossi-

ble at that time. Galileo’s ingenuity is again at work. If the height of fall is very great the

lighter body may be left behind due to the retarding effect of the medium, and if the height

is very small then the observation is very difficult. Under such a situation Galileo finds a

method of amplifying the difference such that it would become easy for observation.

It occurred to me therefore to repeat many times the fall through a small height
in such a way that I might accumulate all those small intervals of time that elapse
between the arrival of the heavy and light bodies respectively at their common
terminus, so that this sum makes an interval of time which is not only observable,
but easily observable. In order to employ the slowest speeds possible and thus
reduce the change which the resisting medium produces upon the simple effect of
gravity it occurred to me to allow the bodies to fall along a plane slightly inclined
to the horizontal.

The logic is clear enough, but this time he displays it in designing an experimental setup. The

time of fall can be delayed without increasing the height of fall by using inclined planes. We

all know how, eventually, inclined planes became an excellent device for studying acceleration.

The problem with inclined planes is that it offers notable resistance on the moving body.

I also wished to rid myself of the resistance which might arise from contact of the
moving body with the aforesaid inclined plane. Accordingly I took two balls, one
of lead and one of cork, the former more than a hundred times heavier than the
latter, and suspended them by means of two equal fine threads, each four or five
cubits long. Pulling each ball aside from the perpendicular, I let them go at the
same instant, and they, falling along the circumferences of circles having these
equal strings for semi-diameters, passed beyond the perpendicular and returned
along the same path. This free vibration . . . repeated a hundred times showed
clearly that the heavy body maintains so nearly the period of the light body that
neither in a hundred swings nor even in a thousand will the former anticipate the
latter by as much as a single moment [minimo momento], so perfectly do they
keep step. We can also observe the effect of the medium which, by the resistance
which it offers to motion, diminishes the vibration of the cork more than that of
the lead, but without altering the frequency of either; even when the arc traversed
by the cork did not exceed five or six degrees while that of the lead was fifty or
sixty, the swings were performed in equal times.69

Again the utility of the pendulum in the study of the science of motion hardly requires any

further comment. Many discoveries of great significance took place with the help of the simple
68Ibid , p. 83.
69Ibid , pp. 84–85.
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but elegant tools such as the balance and the pendulum. We will end this chapter with one

last quotation to illustrate how Galileo anticipates a conservation principle with the help of

the analogy with pendulum, which is nothing but an extended structure rigidly attached to

the fulcrum of an invisible balance with a constant swing of the weights.

[I]t is very likely that a heavy body falling from a height will, on reaching the
ground, have acquired just as much momentum as was necessary to carry it to
that height; as may be clearly seen in the case of a rather heavy pendulum which,
when pulled aside fifty or sixty degrees from the vertical, will acquire precisely
that speed and force which are sufficient to carry it to an equal elevation save
only that small portion which it loses through friction on the air.70

70p. 94.



Chapter 9

Inversion and Chemical Revolution

Just as Aristotelian physics was overthrown by the Galilean and Newtonian physics

in the 17th century, so eighteenth century developments led to the overthrow of alchemy and

Paracelsian beliefs (along with those of the Peripatetics) by the Stahlians (Stahl, Scheele,

Cavendish, Priestley etc.) and the so-called Newtonians (Black, Boyle, Lavoisier etc.). In

this chapter we will argue first that the chemical revolution consists in the overthrow of the

Aristotelian, alchemical, and Paracelsian views by modern experimental chemistry headed

by both the Stahlians and Newtonians and not, as often thought to be the case (e.g., by

Kuhn).1, in the overthrow of the phlogiston chemistry, by the Lavoiserian chemistry. Second

we will argue that the revolution could not have taken place but for the application of inverse

reasoning.

Thus we will first attend to the claim about where the actual focus of attention

should be for understanding the revolution. Then we will argue that the inverse processes,

which in the case of chemistry are the reversible processes, have been the major clue to

the chemical nature of substances, and the discovery of chemical elements. These processes

become part of a methodological theme which is better known as the joint method of proof, the

method of analysis and synthesis held by both Stahl, who invented phlogiston and proposed

the phlogiston theory, and Lavoisier, who discovered oxygen, and then proposed the oxygen

theory of combustion.2

Some remarks about why the first thesis needs to be argued before the second. The

major thrust of our argument in the present thesis as a whole, is to prove the necessary

role of inversion, as a general synthetic methodological theme, in the genesis, development,

1Kuhn 1970, The Structure of Scientific Revolutions, Ch. VI, p. 188, and p. 120.
2The term ‘theory’ in this chapter is not used in any special sense. For example, by a theory of combustion

or acidity etc., we meant it only as an hypothesis proposed to explain a phenomena, and not as a field or a
domain of inquiry.
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and structure of science. From this point of view, if the chemical revolution consisted in the

opposition between the believers of phlogiston theorists and oxygen theorists, we find that

both groups applied the joint method, and therefore subscribe to a common methodological

theme. However they have been dubbed as alternative world views by Kuhn. In his book

Structure of Scientific Revolutions he says that the change of vision as a result of the change

of conceptual scheme is not only restricted to the examples from astronomy and electricity,

but also from the history of chemistry.

Lavoisier ... saw oxygen where Priestley had seen dephlogisticated air and where
others had seen nothing at all. In learning to see oxygen, however, Lavoisier
also had to change his view of many other more familiar substances. He had,
for example, to see a compound or where Priestley and his contemporaries had
seen an elementary earth, and there were other such changes besides. At the very
least, as a result of discovering oxygen, Lavoisier saw nature differently.3

Therefore the question naturally arises: How can it be that the same methodological theme

gave rise to different world views that are said to be incommensurable? If there is some

problem in the application of a method, then it must be by rectifying or systematic application

of the method that the change occurred. If this is not the case the thesis against scientific

method becomes strong, for since there is no method, different conceptual schemes may

develop without any methodological reasons. Since we contend that there exists a scientific

method, we should show that Lavoisier’s success, as well as the failure of the phlogiston

theorists in isolating and identifying chemical elements, must be explainable in terms of

methodological reasons.

Then in the course of the investigation we began to realize that there is a need to dis-

tinguish between conceptual schemes and theories. Kuhn evidently uses them synonymously.

Kuhn also says that the “distinction between discovery and invention or between fact and

theory will, however, immediately prove to be exceedingly artificial.” He further says, in the

next line: “Its artificiality is an important clue to several of this essay’s main theses.”4 We

think that since Kuhn confuses conceptual schemes and theories, and as a result facts and

theories, he provides the systematically misleading thesis that phlogiston chemistry and oxy-

gen chemistry constitute rival paradigms. As a consequence of holding on to the distinction

between conceptual schemes and theories, we visualize the possibility of shifting the object

of focus from the rivalry between the supporters of phlogiston chemists and oxygen chemists

to a much larger and most important issue of understanding the development of modern

3Kuhn 1970, op.cit. p. 118.
4Ibid p. 52.



284 Chapter 9. Inversion and Chemical Revolution

experimental chemistry in its extended historical setting. Questions such as by whom, when,

and how oxygen was discovered, are certainly relevant for both historians and philosophers

of science. However in the present context, our concern is not to answer in definite terms

the specific questions Kuhn raised such as: “Was it Priestley or Lavoisier, if either, who first

discovered oxygen? When was oxygen discovered?”, but rather to address the methodological

question what made the discovery of chemical elements possible?

It is surely the case that the discovery of oxygen became a very important episode in

the chemical revolution. However, as Kuhn himself says, “discoveries are not isolated events

but extended episodes,”5 and hence, we say that, the chemical revolution should be studied

and the pattern of revolution understood from the over all picture of the many discoveries

that took place in the hands of post-Paracelsians over an extended period starting from Boyle

to Lavoisier.

If the problems are very specific, like when and who discovered something, it is

always difficult to judge, specially when there are contenders. In the case of the story of

the discovery of oxygen, for example, we learn that both Priestley and Lavoisier committed

mistakes.6 Kuhn expresses the difficulty of settling the problem as follows:

[A]ny attempt to date the discovery must inevitably be arbitrary because dis-
covering a new sort of phenomenon is necessarily a complex event, one which
involves recognizing both that something is and what it is. Note, for example,
that if oxygen were dephlogisticated air for us, we should insist without hesita-
tion that Priestley had discovered it, though we would still not know quite when.
But if both observation and conceptualization, fact and assimilation to theory,
are inseparably linked in discovery, then discovery is a process and must take
time. Only when all the relevant conceptual categories are prepared in advance,
in which case the phenomenon would not be of a new sort, can discovering that
and discovering what occur effortlessly, together, and in an instant.

If we look at the conditional nature of the statements Kuhn is making here, it becomes

clear that the judgement that we make depends largely on certain decisions we take, and

certain beliefs we hold. It may be in relation to substantial questions, like whether some gas

is dephlogisticated air or oxygen, or in relation to deeply philosophical questions involving

the nature of discovery, like what , and when shall we call something a discovery. A change

in judgement on the conceptual issue would inevitably produce a corresponding change in

the judgement on the substantial issue, and vice versa. This conjugate relationship between

conceptual and substantial issues puts him/her in an eternal trap. If this is the last word

regarding the problem, then Kuhn’s conclusions regarding the impossibility of communication
5Ibid p. 52.
6J.B. Conant’s 1950 pamphlet points out some.
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between/across different world views appears correct. If this is not the last word, then we

should be able to introduce certain factors that would ‘break’ the above mentioned conjugate

relationship. This, according to our understanding, constitutes the challenge, at least one of

the challenges, faced by the post-Kuhnian methodologist.

We think that the challenge can be met, because we see the possibility of a shared

‘space’ among the alternative conceptions, theories to be precise. By systematically working

out from within the shared space it seems possible to judge either way. Having stated the

problem this way, it must have become clear why we need to first attend to the problem

of finding the common ground between the Stahlians and the so called Newtonians. This

explains the motivation in defending the point that Stahlian chemistry could not have been

an alternative to Lavoisierian.

9.1 The Problem of Identifying the Rival Paradigms

It is usual to distinguish between the Stahlians and the Newtonians and stretch the

matter to such an extent where they start appearing like rivals. The entry of the Stahlians

after Boyle and Black has been regarded by many historians as a retrogressive move. For

example, Butterfield conjectures that “the emergence of chemistry as a science is remarkably

late, that the chemistry of Boyle and Hooke may not have taken the shortest possible route

to arrive at Lavoisier, and that the interposition of the phlogistic theory made the transition

more difficult rather than more easy”7 The chapter carries the message “Postponed Scientific

Revolution in Chemistry”, where he further says:

The entire view [the theory of phlogiston] was based upon one of those funda-
mental conclusions of commonsense observation which (like Aristotle’s view of
motion) may set the whole of men’s thinking on the wrong track and block sci-
entific progress for thousands of years.8

Mary Boas also comments that there existed a “gulf” from Black to Lavoisier.9 We think

that this view is misleading in grasping the main problem of chemical revolution.

9.1.1 The Problem of Combustion

The major point of difference, as often pointed out, is with regard to the theory of

combustion. Before we get into the metatheoretical issue, some introduction to the centrality

of the problem of combustion is in order.
7Cf. Butterfield 196?, The Origins Modern Science: 1300–1800 , p. 198.
8Ibid , p. 194.
9Boas 1959, Robert Boyle and 17th-century Chemistry p. 229.
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Why was the nature of combustion so important? . . . First, because it is the most
spectacular and fundamental of all chemical processes. Secondly, it is a process
which concerns all four of the Aristotelian elements. A piece of wood burns; air
is necessary; fire is produced; water is an important product of the burning; earth
(ashes) is left. Thirdly, there is the literally ‘vital’ importance of combustion: for
it is a slow and regulated combustion that maintains animal heat in the metabolic
processes upon which animal life depends. The alchemists looked upon air as ‘the
food of fire’; it is equally ‘the food of living organism,’ both plant and animal.10

It is therefore natural for the investigators to have given most of their attention to this prob-

lem. Since phlogiston theory has been abandoned in favor of the oxygen theory of combustion,

it is natural for historians to comment retrospectively that phlogiston theory retarded the

progress of chemistry. But this should not be stretched too far, because though we now say

that the hypothesis failed to give a satisfactory account of combustion, it nevertheless was a

problem that investigators engaged in. The fact that phlogiston theory was expected to pro-

vide an explanation to a specific problem, shows that it belongs to a part of an investigating

tradition which pondered over local problems, as against global ones. Just as Aristotelian

physics properly identified and localized the problems of motion, alchemists and Paracelsians

realized the problematic nature of combustion. We are not willing to accept the view held

by relativists that even problems change from one paradigm to the other. Our case study

on motion demonstrates the point that Galileo did attend to precisely those problems that

were formulated by Aristotle. In this case too the problem remained the same, which is to

explain the phenomena of combustion and calcination, and of course the general problem of

explaining the transformation of chemical substances.

It is usually understood that the process of combustion was the issue over which

the Stahlians (consisting of Priestley and a few of his supporters, to be precise) debated for

about half a century with the Newtonians (consisting of Lavoisier and his supporters), after

the latter proposed an alternative theory of combustion, replacing phlogiston by oxygen. The

distinction between the Newtonians and the Stahlians cannot be made as sharply as one could

distinguish the new experimental tradition from the old alchemical tradition.

Though it is usual to regard Lavoisier as a Newtonian, it should be borne in mind

that before Lavoisier discovered oxygen, he was not against the Stahlians. He was rather

regarded as one of the French Stahlians.11

10John Read 1961, Through alchemy to Chemistry: A Procession of Ideas and Personalities, p. 119.
11P.K. Basu 1992, in ‘Similarities and dissimilarities between Joseph Priestley’s and Antoine Lavoisier’s

Chemical Beliefs’, cites C.E. Perrin 1988, who argued that Lavoisier was a chemist in the French Stahlian
tradition. The difference between the German and French Stahlians is that the former adopted the view that
there may be properties that cannot, in principle, be explained by the physicalist-reductionist program; the
French followers of Stahl adopted the view that there may be properties that cannot be currently explained
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Even Priestley was interpreted as an eighteenth-century mechanist by R.E. Schofield,

a biographer of Priestley.12 These points bring home the fact that the distinction between the

Stahlians and the Newtonians is not straightforward, but remains problematic. How can it

be that ‘rivals’ understood to belong to different world views (paradigms) cross their borders

and change their identity? We will exploit this uncertainty to defend our thesis, that both

Priestley and Lavoisier shared the same world view, contra Kuhn.

That characterizing the differences between the Stahlians and Newtonians in the

context of chemical science is not an easy matter also becomes clear from the arguments of

Basu, who shows in an essay aptly entitled ‘Similarities and dissimilarities between Joseph

Priestley’s and Antoine Lavoisier’s chemical beliefs’, that there was considerable common

ground between Priestley and Lavoisier. Thus Basu:

They had similar ontological beliefs to the extent that both held Stahlian beliefs
with respect to chemical composition and the distinctness of chemical properties.
They held chemical reactivity as a distinguishing property to establish chemical
distinctness. They also had a common commitment to gravimetric methods for
determining chemical composition, although it would be fair to say that Lavoisier
employed it more systematically and in analyzing more chemical reactions than
did Priestley.13

One difference between them, as pointed out by Basu, is that

Priestley did not accept the view that chemical distinctness between two com-
pounds, which contain the same constituent principles, may depend only upon
the different proportions in which the different constituent principles are present
in each of these compounds.14

But, interestingly, on the point where Priestley differed from Lavoisier, he also differed from

the other Stahlians, for on this point both Stahlians and Lavoisier agree.15 Another difference,

widely held and also reiterated by Basu, is that Priestley did not employ gravimetric analysis

for all the chemical reactions, ‘across the board’, because he held that not all chemical

substances are amenable to the gravitational criterion. On this point Priestley is definitely a

non-Newtonian, unlike Lavoisier.

From this at least one point becomes clear, which is that Lavoisier remains undoubt-

edly a Newtonian, but at the same time a Stahlian. That is, he held Newtonian beliefs over

and above Stahlian beliefs, showing that they are compatible belief systems. Therefore they

by such a program because the theory at its present stage of development is insufficient. (Ibid . p.452.)
12Ibid .
13p. 468.
14Ibid.
15Ibid , pp. 455, and also p. 468.
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do not constitute alternate paradigms as suggested by Kuhn on the basis of phlogiston theory

alone. Phlogiston theory may have blinkered the vision of Priestley, and possibly of a few

others, but not of the large number of chemists (among them a large number of erstwhile

Stahlians) who followed Lavoisier after his theory of oxidation and the discovery of a method

of finding out the elemental nature of chemical substances were proposed.

9.1.2 Lavoisier and Priestley on the Joint Method

What is analysis and synthesis? The question appears to be trivial, because who

does not know that analysis means decomposing a complex into its components, and likewise

that synthesis means composing things into a complex whole. But then, as it appears clear,

the answer would depend on what is complex and what is simple. That is if we know whether

a substance is complex or simple, then we can tell whether the process is analysis or synthesis.

However, to judge substances in these terms is not a trivial matter. The history of science

provides ample evidence for this surprising fact. What was considered complex at a period

of time, was later considered simple, and this inverse characterization has led to the genesis

of alternate theories.

This inversion of terms makes our discussion of the joint method of proof more

difficult and confusing. For example Joseph Stahl analyzed sulphur into vitriolic acid and

phlogiston, and synthesized sulphur back from vitriolic acid and phlogiston rich material

(charcoal).16 Today we consider sulphur a simple element, and hence the question of analyzing

it further would be impossible. However, the ability to conduct both the processes was

considered by Stahl a major discovery, for he held the synthesis as a proof for the composition

of the chemical, sulphur.17 The underlying ‘indubitable’ belief, as stated by Juncker, a student

of Stahl, is:

A body is composed of the materials from which one forms it and into which it
is resolved.18

The underlying belief in the method of analysis and synthesis remains an axiom of

chemistry founded by Lavoisier. Lavoisier writes in the Elements of Chemistry Chapter III:

Chemistry affords two general methods of determining the constituent principles
of bodies, the method of analysis, and that of synthesis ... and in general it ought
to be considered as a principle in chemical science, never to rest satisfied without
both these species of proofs.

16N. Koertge 1980, p. 152.
17Ibid .
18Quoted by N. Koertge, ibid , p. 153.
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In the context of a discussion regarding the composition of atmospheric air, Lavoisier further

says that it is composed of two elastic fluids of different and opposite qualities. The proof

for this is given as under:

As a proof of this important truth, if we recombine these two elastic fluids which
we have separately obtained in the above experiment, viz. the 42 cubical inches
of mephitic air [nitrogen] with the 8 cubical inches of highly respirable air, we
reproduce an air precisely similar to that of the atmosphere, and possessing nearly
the same power of supporting combustion and respiration, and of contributing to
the calcination of metals.19

Here we have Stahl and Lavoisier, both mentioning the usefulness of the joint method of

proof by means of analysis and synthesis in finding the chemical nature of substances. This

suggests, we think beyond doubt, that on the fundamental question of what constitutes

chemical analysis they agree. This remains one of the major similarities between the Stahlians

and Newtonians, among others that we shall encounter later. Lavoisier is clearly a Stahlian.

This method helped Stahl in the first place to systematically replace alchemy and

Paracelsian science. And in the second place, the same method helped Lavoisier in inverting

the usage of terms of Stahl by Lavoisier (analysis to synthesis, and simple to complex). This

change ultimately resulted in the gradual elimination of the incorrect theory of phlogiston to

explain combustion and calcination. One might raise the question: how can it be that the

same method produced one correct theory and another incorrect theory? One of the reasons

for this, we think, lies in the fact that phlogiston had been invented to explain combustion, and

hence remains a supposition. By contrast oxygen, which replaced phlogiston’s role entirely,

was discovered in some sense (possibly unacceptable to Kuhn), and bottled by both the

believers and non-believers of phlogiston.

The other more serious point is that the circular link between a property and the

corresponding chemical principle could not be broken without bringing in non-chemical prop-

erties such as weight, into the scene of investigation. Without a conserved quantity like weight

which added additional information toward the simpler and complex nature of the elements,

the detection of the error would not have been possible. As indicated by the studies of

Lavoisier, it was the increase in weight of the sulphur, phosphorus and metals in calcination,

that gave the initial indication of the elemental nature of both metals like mercury, and of

the ‘eminently respirable air’ (oxygen).

However Kuhn claimed that both the theories could explain the ‘facts’ equally well,

arguing that the determining factor is to decide who belongs to what paradigm. It appeared

19Ibid .
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to Kuhn that both conceptual schemes are coherent and meaningful, and hence the choice

of the scientists at large has been the major reason or non-reason for the replacement of

phlogiston theory. We shall try to show below, however, that phlogiston theory could not

have given rise to a paradigm because it lacked certain features that are otherwise common

features of paradigms. All attempts to defend the phlogiston theory have failed because of

the lack of empirical evidence in which both believers and non-believers of phlogiston believed

in.

9.1.3 The Genesis of the Phlogiston Hypothesis

When we look at the context of ‘discovery’ of phlogiston theory, it becomes clear

that the observation of the disappearance of a portion of the burning substance was initially

the problem, as well as the ‘clue’. Becher (1635-82), who appears to have influenced Stahl

in proposing the theory of phlogiston, supposed that all combustible matter lost the terra

pinguis, or combustible principle, during the process of burning.20 Stahl gave a new name,

phlogiston, to this principle of combustion. What has been observed in the burning of wood

and charcoal, has been applied, by analogy, to the calcination of metals, the analogy being

the involvement of fire in both cases. Substances that burn easily were said to have more

phlogiston than others.

Why should absence of something cause concern for the Stahlians or any scientist for

that matter? If they did not believe in the conservation of matter, why would one think that

the decrease or absence (or the increase) of something needs explanation? Most accounts of

the chemical revolution give us the wrong impression that the success of Lavoisier was due to

his firm belief in the conservation of matter.21 Did the alchemists or the Paracelsians not be-

lieve in conservation? The notion of transmutation of substances suggests that they certainly

believed in the conservation of matter. Thus this could not be regarded as a distinguishing

feature of Lavoisier’s assumptions.

The ancient Greek inscription associated with Ouroboros, or the tail-eating serpent,

specially adopted by the Paracelsians, also suggests that conservation of matter is a universal

theme across the chemical paradigms. The inscription says: “One is all, and by it all, and

to it all, and if one does not contain all, all is nought.”22 Ancient metaphysicians, whether

Atomists or non-Atomists, believed in conservation. If there was one common theme among

20Becher believed that all minerals are composed of three constituents, terra pinguis, terra mercurialis, and
terra lapida, corresponding to the tria prima, the sulphur, mercury, and salt, of the Paracelsus. John Read
1961, op.cit. p. 120.

21See for example, J.B. Conant 1960, op.cit.
22Read 1961, op.cit. p. 25.
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all the Greek physiologues, conservation certainly was that theme. If conservation was such a

widely held belief among the philosophers, why has it been projected as the point of difference

between Priestley and Lavoisier?

The actual difference, we think, is the experimental proof of the conservation of

chemical matter in ‘transmutations’ (chemical reactions), provided by Lavoisier, and not

the general belief in the conservation of matter. We think that it would be impossible to

prove that either Priestley or any of the defenders of phlogiston theory did not believe in

conservation. Priestley certainly argued against the conservation of weight as an index of a

proof for the conservation of matter. It is important also to bear in mind that he did so after

Lavoisier proposed his oxygen theory of combustion, and in defense of his phlogiston theory.

But this does not suggest that he did not believe in the conservation of matter. The facts

are very different, for he was questioning the property of weight as a fundamental property

of all physical substances. Since physical substances like light, heat etc., appear not to have

weight, why shouldn’t we suppose that phlogiston be among those which lacked weight? This

is the gist of Priestley’s argument in defense of his theory.

It is therefore correct to think that while every chemist believed in the general idea

of conservation, it was Lavoisier who specified and verified its truth. He also brought home

the point that as far as chemical combinations and separations are concerned, the weight of

the chemicals is a sufficient conserved quantitative parameter.23 Since the presupposition of

conservation was involved in the invention of the notion of phlogiston, this event is certainly

not inexplicable.

If quantitative methods had been the order of the day, then possibly the Stahlians,

would have realized the problems that burning may lead to loss in some cases, and gain in

some other cases, of the quantity of substances. But the more important aspect of quantifying

the loss and gain of matter is the necessity of conducting the experiment in closed conditions.

Both Priestley’s and Lavoisier’s experiments were conducted in controlled conditions. The

latter however took extraordinary care to close and isolate the apparatus from the surrounding

environment.

Since we know from history that at the time of the genesis of the hypothesis both the

quantitative method and the conduct of experiment in closed conditions were not prevailing

23Basu, however, thinks that Lavoisier did whatever he did without justification. He argues that since he
could not prove the identity or proportionality relation between inertial and gravitational mass, his applica-
tion of the principle of conservation of weight needs justification. We however think that under laboratory
conditions of a chemical experimentation the knowledge of gravitational mass is sufficient. Looking at the
theoretical expertize needed to prove the identity between gravitational and inertial mass, it is unfair to de-
mand such a justification from a chemist. We should bear in mind that this was a problem Einstein, and other
esteemed physicists were grappling with in the beginning of this century. Cf. Basu, op.cit. p. 460ff.
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practices, we conclude that the phlogiston theory was invented under circumstances where

the scientific methods, in the present sense of the term, were not applied. Therefore despite

the belief in the joint method of proof, Stahl and his followers, could not but propose and

believe in the (incorrect) theory of phlogiston.

It is also necessary to bear in mind that the involvement of the erstwhile element,

air, is a necessary factor for an understanding of the phenomenon of burning as well as that of

calcination. This has been another handicap of experimental chemistry that is just beginning

to emerge. The first break-through in understanding the complex nature, i.e., non-elemental

nature of air was only in the year 1754, when Black discovered an evidently distinctive species

of air, namely fixed air. (The phlogiston theory was proposed by Stahl in the year 1697.)

The later developments suggests that more adequate experimental methodology was required

to achieve an understanding of the nature of air.

The discovery of fixed air involves, interestingly, both the quantitative method of

weighing the reactants and products during the reaction, and the joint method of proof

realized in the form of reversible reaction with lime, fixed air and chalk. The later discovery

of oxygen would not have been possible without the prior discovery of fixed air, because fixed

air has a number of contrasting properties with oxygen, making the individuation of oxygen

easier. Since this point is supportive of the main thesis this will be elaborated below in a

separate section.

Thus it is clear that in the context of discovery (or invention to be precise) of

phlogiston, certain scientific methods were evidently not known and thus could not be applied.

It is reasonable to think that it is very unlikely that a phlogiston type theory would have been

proposed after the introduction of the quantitative method. The theory evidently appears

incompatible with the method the new chemistry was beginning to adopt. Interestingly very

bad and weak reasons were put into the fray by the defenders of phlogiston theory in the

context of application. Since the methods that were needed for the discovery, and the methods

necessary to establish were evidently the same, at least in this case, the thesis of generativism

stands vindicated.

Since the idea of phlogiston was invented without the aid of scientific methodology,

the problem stated earlier, that despite the similarity in the joint method of proof by both

the Stahlians and the Newtonians they were led to different theories gets resolved. The joint

method as stated by the Stahlians, is not sufficient. And for sufficiency the joint method

should be linked to (a) the quantitative method of measuring the parameters involved, (b)

an application of the principle of balance sheet, and (c) the need to conduct the chemical
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processes of analysis and synthesis in a closed environment. We will illustrate these points

later.

These ‘additional’ components must not be interpreted as independent methods.

They are factors, by the addition of which the former qualitatively stated method of Stahl

becomes transformed into the one unitary quantitative and experimental method of Lavoisier.

For Lavoisier all these considerations enter at once to become part and parcel of a single

method favoring his discoveries.

The methods used, therefore, by Lavoisier are mostly in continuation with the foun-

dations already laid by earlier investigators, and he is working over and above that foundation

following a similar method. He of course discovered the need to employ certain other methods

as well, such as the taxonomic method and the method of quantitative analysis.

9.1.4 The Stahlians and the Newtonians on the Notion of Element

We have seen that the Stahlians and the Newtonians were grappling with the same

problem of finding the principles of chemical behavior. This as we see it was the central

problem which led to the chemical revolution, and not merely the problem of phlogistic

theory.

The problem was first realized and defined by R. Boyle (1627-91), an exponent of

Francis Bacon’s inductive system of philosophy. In his celebrated book The Skeptical Chymist

written in the year 1661, Boyle came out with a set of arguments against the medically minded

iatro-chemists (Paracelsians) and the gold-seeking alchemists. He questioned the three ele-

ments of Paracelsus, the four of Aristotle and the five of the Peripatetics. He proposed that

chemistry must be built, if possible, on the identification and the knowledge of those chemical

substances, which cannot be separated into different components, by chemical means.24 A

more or less similar pragmatic definition of chemical element is favored by Lavoisier.

All that can be said upon the number of elements is in my opinion, confined
to discussions entirely of a metaphysical nature. The subject only furnishes us
with indefinite problems, which may be solved in a thousand different ways, not
one of which, in all probability, is consistent with nature. I shall therefore only
add upon this subject, that if, by the term elements, or principles of bodies, to
express our idea of the last point which [chemical] analysis is capable of reaching,

24Boyle was skeptical of the search for elements. His notion of elements, as well as his skepticism are reflected
in the following passage: “And, to prevent mistakes, I must advertize you, that I now mean by elements, as
those chymists that speak plainest do by their principles, certain primitive, and simple, or perfecting unmingled
bodies; which not being made of any other bodies, or of one another, are the ingredients of which all those called
perfectly mixt bodies are immediately resolved: now whether there be any one such body to be constantly
met with in all, and each, of those that are said to be elemented bodies, is the thing now in question.” The
Skeptical Chymist p. 187.
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we must admit, as elements, all the substances into which we are capable, by any
means, to reduce bodies by decomposition. Not that we are entitled to affirm,
that these substances we consider as simple may not compound of two, or even of
a greater number of principles; but, since these principles cannot be separated, or
rather since we have not hitherto discovered the means of separating them, they
act with regard to us as simple substances, and we ought never to suppose them
compounded until experiment and observation has proved them to be so.25

Just as Black and Boyle had done earlier, Lavoisier too insisted on the need to depend on

experiment and observation and discouraged the use of a priori assumptions in chemical

investigations.

We have seen that Stahl’s beliefs about Principles of bodies are also based on chem-

ical analysis and synthesis. Stahl adopted some of the criteria proposed by Boyle, such as

that the constituents upon combination yield complex bodies, and upon separation yield

the ‘Principles of bodies’. Stahl defined chemistry as the art of analyzing or resolving mixt,

compound, or aggregate bodies into their Principles, and of synthesizing or composing them

back from the Principles26. This is quite in line with the Newtonians.

Thus, on such a central idea of what should be regarded as an element, the Stahlians

and the Newtonians, from Boyle to Lavoisier, had agreement.

9.1.5 Positive Contributions of the Stahlians

The Stahlians and the believers of phlogiston theory continued contributing to the

experimental isolation, identification and characterization of many chemicals, though they

were not correct in their identification of elements. The results obtained from the laboratories

of the Stahlians were used without inhibition by non-Stahlians notably Lavoisier, in their

chemical investigations.

Henry Cavendish (1731-1810) a distinguished chemist in the Stahlian tradition,

made important quantitative studies in chemistry, despite being faithful to phlogiston theory.

He investigated the properties of fixed air and inflammable air which he thought was phlogis-

ton; collected gases over water and mercury, an indispensable technique for isolating gases;

determined the volumetric composition of water, and also the composition of atmosphere;

etc.,

Priestley, despite being a very ardent supporter of the phlogiston theory till his

death, contributed enormously and the list of his contributions is huge: He discovered alka-

line air (ammonia), acid air (hydrochloric acid), nitrous air (nitric oxide), diminished nitrous

25Elements of Chemistry 1789.
26N. Koertge, 1980, p.153
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air (nitrous oxide), nitrous vapors (nitrogen dioxide), dephlogisticated air (oxygen), phlogis-

ticated air (nitrogen), vitriolic acid air (sulphur dioxide) etc. He recognized that green plants

restore the goodness of air vitiated by the burning of candles and respiration of animals, and

that in the process oxygen is released; found out that water is formed even if the gas is dry;

along with Warlitre noticed that water is formed in the explosion of inflammable air with

common air or dephlogisticated air.

Scheele (1742-86), who first discovered oxygen (fire air), but published only in 1777,

also discovered chlorine; obtained pure hydrochloric acid and silicon fluoride; discovered

several organic compounds like tartaric acid, oxalic acid, lactic acid, uric acid; citric acid

glycerol, aldehyde etc. He held that when phlogiston combines with oxygen (fire air) it

becomes heat.27

Thus the believers of phlogiston theory made important contributions, most of them

were integrated into the new chemistry founded by Lavoisier, suggesting that discoveries may

be compatible despite theoretical differences.

9.1.6 Conceptual Scheme and Theory

While Priestley linked the newly discovered ‘eminently respirable gas’ to his theory

of phlogiston and named it ‘dephlogisticated air’, Lavoisier named it ‘oxygen’, linking it with

his theory of acidity. Both theories have been proved wrong, while the discovery of a species

of gas stands. Isn’t it therefore clear enough that it is one thing to discover a gas, and

quite another thing to embed the discovery in a theory? The fact that a new species of gas

has been isolated and identified by certain individuating descriptions that are common to

the believers of different theories, provides sufficient indication to the effect that there exists

some invariant aspect. We think that this invariant aspect is the conceptual scheme of a

given field of inquiry.

The descriptions used for individuating the gas discovered by Priestley and Lavoisier

are similar, such as: that which not only supports combustion but also burns with radiance;

that which is purer than the air that we live in, being eminently respirable; that which did

not dissolve in water like fixed air; that which did not precipitate lime water like fixed air;

that which could be used again for the calcination of metals; did not suffocate animals, rather

enabled animals to live longer unlike in the fixed air; that which diminished more than the

common air when added to nitrous air. Further Priestley’s test for the goodness of air was

also employed by Lavoisier.

27The listing of the contributions is borrowed from Partington (1960) A Short History of Chemistry .
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These descriptions, we think, constitute the conceptual scheme, in distinction to

the corresponding theories mentioned above. Whether these descriptions are independent

of theory or not depends largely on what conception of theory one holds while passing the

judgement. However what can be asserted with certainty is the following: whatever notion

of theory one holds, the above descriptions constitute the invariant observations. Therefore

if one calls these descriptions non-theoretical aspects of scientific knowledge, then they both

shared them. If these descriptions are construed as theoretical then this portion of theory

was shared by both. Any difference traceable should be over and above this invariant base.

While these descriptions used are based on observed features of the gases, the theories are

based on the supposed involvement of the gases, without prior empirical verification.

9.1.7 The Phlogiston Theory is no World-view

The fundamental problem of chemistry at the time of its genesis is, to our mind,

to identify the principles of chemical behavior. Combustion or calcination do not exhaust

all possible chemical changes. Therefore an incorrect theory of combustion did not halt the

study of other chemical changes. We have already seen how the believers in phlogiston theory,

such as Scheele, Priestley, Cavendish etc., did make important contributions in isolating a

number of distinct chemical substances, including gases. What they could not do was to

give a proof that a given isolated substance is an element. Scheele, Priestley and Cavendish

had all isolated and bottled gases which were later known to be proper elements. Therefore

we cannot say that a theory of combustion is the determining factor of chemical revolution.

Lavoisier also believed in an incorrect theory of acidity, which was later abandoned. No

historian or philosopher would argue that his incorrect theory of acidity halted the progress

of chemistry, because Lavoisier did solve a fundamental problem of chemistry by providing

a method of proof for the identity of chemical elements. Lavoisier having postulated that

oxygen is the principle of acidity did not erect a new world view contrary to the presently

accepted chemistry with the modern theory of acidity. Theories of combustion or acidity do

not determine a world-view. An altogether different notion of chemical elements could have

constituted a world-view. Alchemy in this sense is a world-view, because its practitioners

admitted only a few essential ‘elements’ (principles). Therefore holding different viewpoints

on relatively ‘small’ theories would not amount to holding different world-views. In the

above chapter we claimed that Galileo’s method of synthesizing contraries into a single system

opposes Aristotle’s views. The opposition is so radical that one cannot but call them different

world-views. This we hold despite our claim that Aristotle and Galileo were attending to the
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same problems. Even in the case of chemistry the central problem that alchemists and the

new experimentalists have is to explain chemical transformations—a problem formulated by

the Physiologues as far back as Thales. Thus the rivalry between Priestley and Lavoisier is

not fundamental enough to designate it as a rivalry between different world-views.

Not only did phlogiston theory with its various versions, live a short life, the two

rival theories of combustion coexisted for a very brief brief of three decades. Stahl published

his views on phlogiston in 1697, influenced by the views of Becher (1669). Lavoisier’s views

on combustion were published in 1783. The coexistence of the two theories in the community

of scientists ended with the death of Priestley, which was in the year 1804. Therefore the

actual period of conflict was only about two decades long.

This is quite unlike the ‘physical’ revolution, where Galileo had to fight even the

State, the Church, as well as the common beliefs of the society at large. Aristotle’s views

were deeply entrenched in every aspect of society. This degree of entrenchment is vital to call

anything a world-view. Phlogiston theory does not have these essential features of a typical

world view. In the context of chemistry, however, alchemical and the Aristotelian views were

just as well entrenched in the belief systems of society before the chemical revolution.

The beliefs that are due to a world view seep deep into society and are not just

restricted to a few scientists. We are not familiar with any historical account which indicates

that phlogiston theory amended the belief system of people at large, i.e., outside the close

coterie of the working scientists. On the contrary the belief in alchemy or the Aristotelian

theory of four elements has been part and parcel of the world view shared by not just the

community of ‘scientists’, but people at large.

How can we call such a transformation involving a small number of adherents of the

theory by an alternate theory a revolution. ‘World view’ or ‘paradigm’ are much too grand

to characterize local explanatory theories such as the theory of phlogiston.

9.1.8 The Real Issue of the Chemical Revolution

The differences between the Stahlians and the Newtonians certainly exist, however,

as we shall see, considering the arguments that led to the chemical revolution, they remain

non-issues. The major points of difference that have been thought to be significant in under-

standing the chemical revolution are that the Newtonians were Atomists, that they believed

in mechanistic and reductionistic explanations of chemical facts, and furthermore believed in

quantitative, specially gravimetric, analyses in chemistry. The belief in conservation has al-

ready been shown to be a universal feature and therefore cannot be even considered the point
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of difference, with the qualification that the Newtonians proved a conservation ‘theorem’ in

the case of chemical changes. We shall consider the other putative points of difference and

discuss briefly how they can be shown to be non-issues.

A belief in Atomism is not a necessary condition for the identification of elements.

This becomes clear because those that rejected Atomism such as Priestley also discovered and

contributed to the isolation, if not the identification of elements as shown above. Atomic

theory as a scientific and empirical thesis came much later, after the consolidation of the

chemical revolution. The discoveries in chemistry have been found compatible with the

philosophical idea of Atomism. However a belief in the idea is not an essential condition for

making discoveries. Thus, a belief in a single, two or any number of elements is compatible

with the general metaphysical theories of Atomism. While the chemical revolution could

disprove the ancient belief that water, air etc., are elements, and there are more elements

than initially thought, it did not prove the existence of atoms. That elements correspond

to atoms continues to be a metaphysical belief at the time of the chemical revolution, and

the correlation was proved only after the emergence of atomic theory , in the sense of a field

of inquiry, in the present century. The discovery of elements is therefore independent of the

belief in Atomism. However the development of the scientific atomic theory can be shown to

be necessarily dependent on the discovery of elements and the knowledge of how and in what

proportion they combine. Therefore, although Lavoisier believed in Atomism and Priestley

did not, the major reason for Priestley’s failure or Lavoisier’s success is not due to holding

or not holding this belief.

It is true that Boyle, Black, Lavoisier etc., were Newtonians, and hence believed in

a mechanistic philosophy of nature. But this philosophy did not explicitly help them in any

manner to achieve any reduction of chemical combinations in terms of mechanical principles.

The subject of chemical kinetics is in fact a recent development. The philosophical problem of

whether any such reduction has ever been effected is a subject of live debate. All that Lavoisier

could achieve was a more satisfactory classification, in relation to the ones that are available at

that time. He also identified, isolated, and characterized many chemical substances, besides

identifying many substances as chemically simple elements such as oxygen, hydrogen, carbon,

nitrogen, and various other metals. In the course of these findings, Lavoisier employed no

reasons that can be identified as mechanistic in nature. Quantitative reasoning should not

be confused with mechanistic reasoning, and similarly qualitative reasoning should not mean

non-mechanistic. We have evidence to the effect that Lavoisier used quantitative reasoning,

and indeed it was crucial, but he did not explain the reactions in terms of the mechanistic
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notion of chemical energy, heat energy etc. Therefore, this difference between Priestley

and Lavoisier again should not be viewed as an important factor in analyzing the chemical

revolution. It is however a useful notion to understand the intellectual qualities and beliefs

of these scientists.

It can be argued that mechanistic philosophy, just as phlogiston theory, retarded

the emergence of modern chemistry, because mechanists like Newton and Descartes did not

think that there exists a distinct species of change other than the physical. One of the first

principles of school chemistry today is to understand the fundamental distinction between

chemical and physical change.

It may be argued that the major difference between the Stahlians and the New-

tonians is based on gravimetric analysis of chemical reactions. Though this, on the face of

it, appears like a serious difference, the Stahlians would find no need to oppose gravimetric

analysis once the issue of the theory of combustion is set aside. This is because for the

supporters of the phlogiston theory gravimetric analysis posed a serious threat. In order to

save the phlogiston theory after the alternative has been suggested, they took a stand that

physical features like weight cannot determine chemical simplicity.

Priestley’s explicit arguments against applying gravimetric analysis to all the chem-

ical substances are present in his work ‘On the Phlogistic Theory’ dated 1799. Oxygen theory

of combustion and calcination was published by Lavoisier in the year 1783. Basu suggests

that “it is possible that Priestley’s views were close to those of the mechanists during the

pre-1790 period.” And it is possible that during the post-1790 period (the works written

during that period have been analyzed by Basu in his paper) Priestley became a Stahlian.

If these observations are correct, then Priestley opposed gravimetric analysis for all chemical

reactions, only after the announcement of the oxygen theory of combustion.

The Stahlians were not otherwise opposed to inferring from physical properties of

chemical substances like volume and weight, in their identification. We think, therefore, that

their opposition to gravimetric analysis in chemistry enters later, just as the oxygen theory of

combustion entered into Lavoisier’s chemistry only after the discovery of oxygen. That this is

so can also become clear from the absence of any resistance to J. Black’s discovery of fixed air

(carbon dioxide), the first species of a gas to be distinguished from atmosphere, where he uses

gravimetric analysis. It is well known that it was Black who introduced the use of balance

in the study of chemical reactions. Black adopted Lavoisier’s oxygen theory in preference

to phlogiston theory, and taught the views of Lavoisier to his students.28 The identifying

28Partington, op.cit. p. 94.
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properties of fixed air, such as its solubility in water, its reaction with lime, its being noxious

to animals, its nature of extinguishing fire, etc., are the results obtained from his experiments,

and they have been applied to identify fixed air by Priestley also. Some of them Priestley must

have discovered independently. Though Priestley did not employ any gravimetric analysis,

he used quantitative reasons (which we shall cite below) to favor his discoveries. Opposition

to the quantitative method of chemical investigation, specially gravimetric, did not become

an issue till Lavoisier proposed an alternative theory of combustion.

Physical properties such as weight and volume were the major indicators for the

absence and the presence of chemical bodies for all the investigators including the Stahlians.

Priestley after ‘discovering’ “dephlogisticated air” went on to measure one of its alleged

properties, purity of air, which shows beyond doubt that he was very much in favor of

quantitative reasoning in chemistry.

Being now fully satisfied of the superior goodness of this kind of air, I proceeded
to measure that degree of purity, with as much accuracy as I could, by the test of
nitrous air, and I began with putting one measure of nitrous air to two measures
of this air, as if I had been examining common air; and now I observed that the
dimunition was evidently greater than common air would have suffered by the
same treatment. A second measure of nitrous air reduced it to two thirds of its
original quantity, and a third measure to one half. Suspecting that the dimunition
could not proceed much farther, I then added only half a measure of nitrous air,
by which it was diminished still more; but not much, and another half measure
made it more than half of its original quantity; so that, in this case, two measures
of this air took more than two measures of nitrous air, and yet remained less
than half of what it was. Five measures brought it pretty exactly to its original
dimensions.

At the same time, air from the red precipitate was diminished in the same propor-
tion as that from mercurius calcinatus, five measures of nitrous air being received
by two measures of this without any increase of dimensions. Now as common
air takes about one half of its bulk of nitrous air, before it begins to receive any
addition to its dimensions from more nitrous air, and this air took more than four
half-measures before it ceased to be diminished by more nitrous air, and even five
half-measures made no addition to its original dimensions, I conclude that it was
between four and five times as good as common air. It will be seen that I have
since procured air better than this, even between five and six times as good as
the best common air that I have ever met with.29

Undoubtedly, therefore, Priestley belongs to the quantitative experimentalist tradition.

From these observations we conclude that the similarities outweigh the dissimilarities

between the so called rivals, therefore the chemical revolution should not be understood in

29Quoted in J.B. Conant’s Pamphlet, op.cit.
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terms of the Stahlians and the non-Stahlians, but in terms of the alchemical/Paracelsian

versus scientific chemistry, in the sense explicated by Boyle. Both Stahlians and non-Stahlians

are experimentalists; both groups believed in local theories of explanation as against global

theories of explanation, i.e., both are non-metaphysical; they used similar devices and the

same substances (sometimes even from the same bottle), the same identification criteria.

Finally both believed in the joint method of analysis and synthesis.

While Kuhn’s observations regarding the revolution in physics are more or less in

order with the exception of certain qualifications already expressed in the previous chapter,

his observations regarding the chemical revolution, commit a serious mistake of identifying

rival paradigms within a more or less coherent paradigm of the emerging chemical revolu-

tion. We have shown that phlogiston theorists had more similarities with the newly emerging

methodological principles of chemistry. Since phlogiston theory has been proposed to ac-

count for combustion and calcination of substances, it should not be considered the central

determining factor for the identification of rival paradigms.

There exists no reason why Lavoisier should be against the Stahlians prior to the dis-

covery of oxygen in 1783, and his theory of combustion involving oxygen which was postulated

in the year 1783. Except for a brief period of resistance by the supporters of phlogiston the-

ory, later chemists forgot that ‘wrong’ idea altogether. We think that the residue left within

the Stahlian chemistry after deleting phlogiston theory, can be accommodated without fun-

damental conceptual problems within the newly formulated conceptual scheme of Lavoisier.

This shows the possibility that with the elimination of this issue no major differences exist

between Stahlians and Lavoiserians, and the similarities outweigh the differences. Therefore

the two views cannot be characterized as rival paradigms.

9.2 Role of Reversibility in Chemical Revolution

It is generally regarded that in the the major figure responsible for the chemical

revolution which took place from 1775-1789 is Lavoisier. However we have seen that Priestley

and Lavoisier shared certain beliefs, and we have argued that they do not belong to different

traditions/world views, but belong to the rising tradition of experimental chemistry. The

question ‘naturally’ arises: Why did Lavoisier succeed? Though the question is natural to

us, who have imbibed the influential views of Kuhn that Priestley and Lavoisier worked in

different ‘worlds’, the question is not necessary. After all not every scientist succeeds in

arriving at great ideas even if they all work in the same ‘world’. It is not also necessary that

every scientist belonging to a ‘world’ succeed. Why did only Galileo and not Archimedes
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succeeded in cracking the problem of motion? Why did Newton and not Galileo succeeded in

solving the problem of gravitation, though they both worked in the same ‘world’? We think

that Priestley is just one of those who did not succeed, because he did not use the logic of

inversion, despite being a great experimentalist. So in this section we will concentrate on the

factors that favored Lavoisier’s research methodology, as against Priestley’s.

Whether in the context of the chemical revolution or otherwise, scientists have

always upheld the arguments which are for (a) a taxonomic order, (b) the conservation of

measurable quantities and (c) reversibility of processes. Lavoisier believed, practiced and

preached all these three values that are part of scientific rationality. Priestley however,

despite being a better experimentalist than Lavoisier, did not take these fundamental values

of science seriously. Lavoisier succeeded in establishing conservation of mass during chemical

reactions, and reversibility as a proof of the elemental nature of certain chemical substances.

This brings out another significant point of our thesis: It is not sufficient for a

scientist to have more empirical data by inductive means. There should be a ‘schema’ in

which the data fit well. Lavoisier being a good systematizer, concentrated more on arriving

at a form rather than generating more content . He very freely used the content generated

by the Stahlians. In what follows we shall discuss the most central reasons that ultimately

became the methodological standards of chemistry.

9.2.1 The Taxonomic Ideal

The programs of Lavoisier and Priestley were markedly different, a fact which plays

a decisive role in the choices made by them. The difference lies in the former’s desire to

taxonomize and standardize nomenclature. An investigator who attempts to follow the prin-

ciples of taxonomy adheres to the condition of obtaining mutually exclusive classes, and in

that attempt attains the intended clarity needed for scientific investigation. The differences

between Priestley and Lavoisier with regard to the general taxonomy of chemical substances

is very crucial in making a meta-theoretic judgement, as well as explaining the chemical

revolution.

Lavoisier, influenced by the ideals of Condillac started his program by addressing

the task of producing a system of chemical nomenclature by reforming the vocabulary of

chemical terms. He wanted to build a vocabulary that would indicate the nature of the

substance, composition and relationship. The reason why he embarked on the task of building

a systematic nomenclature becomes obvious when one notices the sort of names chemical

substances had before Lavoisier. Substances went by “fanciful and confusing names like
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pompholix, colcothar and powder of algaroth; butter of arsenic, flowers of zinc, and martial

ethops . . . ”30

Lavoisier’s program of naming chemical substances was thus connected to a knowl-

edge of (a) taxonomy of chemical substances, (b) whether a substance is a complex or simple

and if complex, its composition. However all these requirements were not immediately avail-

able to him from other investigators, so that he could collect, organize and finish his task.

His task in fact widened

While I proposed to myself nothing more than to improve the chemical language,
my work transformed itself by degrees, without my being able to prevent it, into
a treatise on the Elements of Chemistry.

This initial motivation is crucial, though he did not succeed in arriving at a taxonomy of

chemical substances. Though conservation of weight had played an important role in the war

against phlogiston, the concern for eliminating indeterminate reference and ambiguity of the

term is also highly relevant for explaining the chemical revolution. If the discoveries made

do not find a place in a taxonomic system, they would be eventually (if not immediately) be

eliminated. After the construction of the Periodic Table of chemical elements, the elements

that were identified by Lavoisier had passed the test of taxonomic order, and phlogiston

could not find a place in that table. Just as symmetry considerations play decisive role in

the construction of scientific concepts, taxonomic systematization plays a decisive role in

the acceptance of natural kinds. Thus in the ultimate analysis the epistemological role of

taxonomy, as a method of discovery as well as a method of justifying knowledge, cannot be

replaced by inverse order alone. Since taxonomy is not the immediate concern we will not

discuss this further.

9.2.2 The Use of Balance

When some substances disappear, and the cause of disappearance is not known,

it becomes a matter of concern for an investigator, or for that matter anybody. The first

component of air (atmosphere) to be discovered was fixed air (carbon dioxide), and the story

of its discovery by Black clearly demonstrates the point that decrease (absence) in the weight

of a substance prompted him to identify the air leaving the substance. This also illustrates

the point that discoveries can be made only in a charged problem oriented mood of an

investigator.

30Cf. Toulmin and Goodfield 1962, The Architecture of Matter p. 217.
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Joseph Black (1728-1799) in the year 1755, discovered that chalk loses 44% in weight

when burnt to produce lime. He explained the loss of weight to the escape of an invisible gas,

which he named as fixed air (carbon dioxide). In the process of slaking, lime combines with

water to form slaked lime, but in the presence of fixed air it releases the water, recombines

with the fixed air and is reconverted into chalk.31 Chalk turning to lime and lime back

to chalk with release and uptake of fixed air is a reversible reaction. In these experiments

Black recovered the original weight of chalk, shown by his quantitative analysis—the first case

where conservation of mass was established in a chemical reaction. The credit of discovering

a method of identifying and differentiating a gas different from the atmosphere goes to Black.

The first property that has given clues to analyzing chemical properties is the change of

colorless lime into white precipitate in the presence of air (fixed air). This white precipitate

is the recovered chalk.

Ever since this discovery, the lime test was used to determine the fixed air of at-

mosphere which makes lime turn milky white. Later Black discovered another identifying

property of fixed air that it is deadly to all animals that breathe it. He also discovered cer-

tain other sources where fixed air is formed, such as fermentation, breathed-out air, vapour

released when charcoal is burned. This discovery can be termed the first breakthrough in

modern chemistry, though it did not immediately discredit the then prevalent view that air

is an element. Since his conclusions are definite and experimentally demonstrated and non-

speculative in nature, they became the basic tools of analyzing other gases of the atmosphere.

The properties of fixed air discovered by Black became the ‘reference frame’ for discovering

other chemicals, specially other species of gases.

The amount of carbon dioxide found in the atmosphere is very low compared with

other gases like argon, nitrogen, oxygen and hydrogen. Ironically the first gas to be identified

and separated as a distinct chemical species was carbon dioxide. Another irony is that though

solid and liquid substances are more immediate to experience and more properties of them

are delineable, the initial breakthrough in chemistry in identifying and separating elements

took place first with gaseous substance.

In a situation where the products in a chemical reaction were known to be of lesser

weight than the reactants and an effervescence was also observed indicating the release of an

invisible gas, the conclusion that the released gas must account for the loss of weight of the

reactants appears to be inevitable. Therefore the most crucial observation in the discovery

of fixed air as a component of air is the observation of loss of weight in the formation of

31Lowry Historical Introduction to Chemistry pp. 50-51.
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lime. This observation and the conclusion cannot be coupled together unless the quantitative

analysis confirming conservation is available.

If one would investigate the matter by considering the chemical properties of sub-

stances alone, without looking at the corresponding changes in physical properties, such as

loss or gain of weight/volume, it is impossible to break the circle of properties. That to every

visible property there exists a corresponding chemical principle (substance) was a commonly

shared belief of all the schools of experimental chemistry at the time. However, such a one-

to-one correspondence between a property and the underlying principle is not sufficient to

establish the elemental nature of the world. That properties do not stay isolated independent

of other properties, and connections reflected in terms of correlations are necessary for the

success of chemical investigation, appears to be one of the beliefs of Black. This is reflected

in his search for interrelations between chemical phenomena and physical properties. Though

physical properties like weight and volume may not inform one about the distinctively chem-

ical properties such as specificity in reactivity, they are sufficient to indicate in definite terms

the presence or the absence of chemical substances. Which chemical substance is present or

absent, however, cannot be determined by purely physical means. One fundamental assump-

tion however of Newtonian chemists is that all chemical substances have weight.

Priestley believed in a sharp distinction between physical and chemical properties.

But did Priestley believe in this dichotomy prior to Lavoisier’s announcement of the oxygen

theory of combustion? If not, then our earlier claim that even Priestley worked in the same

world as that of Lavoisier comes out even more strong, because Priestley’s arguments could

then be rated as being motivated against Lavoisier. Priestley denied that weight could be

considered for understanding chemical simplicity, just on the ground that weight is a non-

chemical, physical property. Therefore it appears that he excluded one from explaining

the other. But, we know from the reactions involving the hypothetical ‘phlogiston’, which

was believed to have negative weight, that a change in weight of chemical substances could

take place while undergoing a chemical reaction. Therefore it would be incorrect to say

that chemical and physical properties do not affect each other. On this ground we can

say that Priestley could not continue keeping the physical and the chemical independent of

each other. Independently of bringing in the increase or decrease of weight of a metal upon

calcination, how could Priestley account for the ‘simplicity’ of calx, or the ‘complexity’ of a

metal? Priestley did argue for the simplicity of calx by bringing in the notion of a physical

property such as weight.32 Another difference is that Lavoisier identifies two compounds

32Cf. J.B. Conant op.cit.
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with the same elemental constitution, but in different proportions, as two different chemical

substances, while Priestley would regard them as essentially the same. The latter believed

this because for him gravimetric data do not reflect chemical simplicity.33

Another case to show that Priestley indeed would consider physical factors in his

arguments is the volume of substances, which again is not a chemical, and therefore a physical

property. A change in volume has been considered in general by all chemists, including

Priestley, as an indication of whether a substance entered or left the process. Change of the

color of substances is also a physical property of substances, that again became a crucial part

of Priestley’s test for the purity of air.34

9.2.3 Conservation and Reversibility

It is often stated that the application of the principle of conservation of weight helped

Lavoisier and all those chemists who followed him. This is indeed a correct observation.

However we wish to draw the attention to a more fundamental issue: What makes it possible

to apply the principle of conservation? It is the persistent claim of the present essay that

inversion, in this case in the form of reversibility, creates a closure, a space, within which

the conservation of a quantity can be shown to be possible. In this sense we consider that

inversion is a prerequisite for realizing conservation.

In the specific case of the chemical reactions a space for applying the principle of

conservation has been created by the reversible reactions. The ‘enclosure’ created by the

reversible reactions is like the hypothetical closed universe where nothing is created nor

destroyed. Since it is already assumed, following the general pattern of atomistic thinking,

that chemical reactions consist in transformations involving combinations and separations of

the basic elements from one form into another, conservation in its general scheme of things is

already assumed. However a large number of phenomena cannot be closed in a small localized

space such that conservation can be realized. A general and global metaphysical belief in

conservation is different from a specific and local realization of conservation. While reversible

reactions cannot be physically realized in a large number of cases, there are fortunately some

instances where it is possible. It is interesting to see that the chemical revolution hinges on

some of these simple reversible reactions.

Thus reversible reactions seemingly played a crucial role in the chemical revolution.

Why do reversible processes help in understanding the matter better than unidirectional

processes? One of the advantages of reversible reactions, as mentioned above, is the possibility

33Cf. Basu 1992, op.cit.
34Cf. J.B. Conant, op.cit.
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of closure. Whatever factor is enclosed within the closure would alone be considered for

investigation, thus helping the investigator to concentrate on the changes taking place in

a small ‘universe’. Though the question of ultimate simplicity (i.e., elemental nature) may

remain unsettled the question can be answered relative to the process in clear terms because

of reversibility. Unidirectional processes are open, because one can never say in certain

terms what factors actually cause them. Therefore to begin with non-reversible reactions

could not give clues to the chemical elements in definite terms. However after isolating

and distinguishing the taxonomic properties of certain substances, continued dependency on

reversible reactions in each and every case is not necessary, because the established knowledge

can be applied in the unknown cases. Evidence for our claim are the crucial discoveries made

by both Black and Lavoisier. In reversible reactions the causes and effects can be inverted in

the sense that the cause of a forward reaction becomes the effect of the backward reaction,

and vice versa. Therefore, even if finer resolution of causes may not be possible, the factors

responsible for the process can be identified determinately. Those factors that are necessary

but remain constant or common in both directions of the reaction however remain undisclosed.

The role of such factors can be investigated by experimenting under controlled conditions.

Initial experiments by analysis suggests to the experimenter that a substance con-

tains, say A and B, as constituents. But it does not say that A and B are the only constituents.

This confirmation can be obtained by reversing the reaction if possible under controlled con-

ditions, and quantitative analysis. This method of proof (§9.1.2 page 288) has become a

regular method in chemistry.

Lavoisier’s method of analysis and synthesis has been demonstrated by separating

7 to 8 cubic inches of air from 50 cubic inches of air, by boiling mercury in air under con-

trolled conditions.35 This portion being eminently respirable and combustible was identified

as oxygen, while the remaining portion, 42 to 43 cubic inches, being found unfit for both res-

piration and combustion was identified as mephitic air (nitrogen). Upon recombining them

he reproduced an air similar to that of atmosphere, all the properties being restored. This is

the proof by synthesis.36

Another instance where a similar method of proof was applied is in proving that

water is a compound of oxygen and hydrogen. Henry Cavendish (1731-1810) obtained hy-

35Cf. J.B. Conant, p. 50.
36Today we do not use the term ‘synthesis’ or ‘combination’ for the mixture of gases such as oxygen and

nitrogen, because we distinguish between a mixture and a chemical compound. It was only after two decades of
careful experimentation applying the principle of balance sheet, that scientists acquired a method of showing
the difference between compound and mixture. Compounds are obtained by combination (chemical) of ele-
ments in a definite proportion, while mixtures are obtained by ‘mixing’ of elements in any proportion without
involving any chemical change. (J.B. Conant, op.cit. p. 52.)
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drogen by the action of acids on metals such as zinc, iron and tin.37 Lavoisier repeated his

experiments and found that water was formed when hydrogen was burned in air. Earlier

experiments on burning various substances showed him that it involves the combination of

oxygen with the substance. Therefore, he concluded that when it burns in air, hydrogen

forms water by combining with oxygen. He predicted that hydrogen can be obtained back

from water if the oxygen could be removed. He at once proceeded to conduct an experiment

in which he passed hot steam over a hot gun barrel (made of iron) and obtained hydrogen

and calx (iron oxide). Thus while synthesis (recombining) proved the elemental nature of

oxygen in the earlier experiments with oxygen and mercury, analysis of a compound into its

constituents proved the complex nature of the compound, in this case water. Therefore both

converse methods, analysis and synthesis, can be employed as methods of proof depending

on the objective of whether one is investigating the simplicity or complexity of any chemical

substance.

The chemical revolution gains importance because it altered our earlier view that

earth, water, and air are elements. It was only the Atomists of the past who proposed that

all of the four basic elements are composed of indestructible atoms, and the differences in

a physical property such as the density of these atoms would explain the transformations.

The significant achievement, therefore, of the chemical revolution is that, apart from the

changes that take place on the physical front, there is at least one another kind of change,

called chemical. Variation in density, therefore, is not a sufficient explanation, as held by the

ancient Atomists, for the problem of transformations and variety of the substances. It is in

this period (the 18th century) that a number of metals, that were extracted in pure form even

in the ancient times, were identified as elements; water was analyzed into its constituents,

oxygen and hydrogen; air was analyzed into carbon dioxide, oxygen, nitrogen, hydrogen;

diamond, graphite, charcoal are all discovered to be different forms of carbon; etc. Above all,

the methods of chemical investigation became well established.

The case of the chemical revolution demonstrates that experimental and empirical

evidence alone are insufficient to bring out scientific development. Also the significance

of a discovery cannot be judged by local applicability alone, but rather by how a specific

discovery finds connections with the established canons of knowledge not only within the

domain of inquiry but also outside. In the present case the connection with Atomism and the

growing Newtonian mechanistic world-view certainly played a crucial role for the acceptance

of Lavoisier’s chemistry.

37Lowry 1936, Historical Introduction to Chemistry p. 66.
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We had set three objectives—one general and two specific—to this work as stated

in the synopsis (page iii) The general objective was to clearly indicate the possibility of an

epistemology based on an analytico-synthetic methodological framework. In order to meet

that objective we have made a preliminary attempt, which we believe demonstrates that a

logic of the construction of meaningful and applicable scientific ideas is indeed possible. We

have proposed an alternative view of generativism which is epistemologically significant. We

have envisaged the possibility of articulating a logic of constructing scientific ideas, that would

generate systems having epistemologically desirable values such as equilibrium and symmetry.

In this connection we have argued that generativism and the semantic view of scientific

knowledge would mutually reinforce each other to form a strong epistemological framework.

This framework would be analytico-synthetic, incorporating the envisaged constructive logic

based on inversion and the analysis based on deductive logic. Since the instruments of

deductive analysis are well established, we have concentrated mainly on the problem of giving

a methodological character to synthetic logic. Some preliminary results in this direction are

clearly visible, but, needless to say, more work needs to be done to claim anything called

success. This sense of incompleteness is, needless to say, overpowering. But if we are pressed

to say what have we achieved in the work, our clear reply would be: we could identify a

problem as well as an idea so that it can be pursued with single mindedness for some years to

come. In what follows we shall present (1) the reasons for our optimism, and (2) the nature

of the work that needs to be done for further strengthening the proposed thesis.

The thesis claims that there exists the possibility of articulating an ampliative logic,

which is neither inductive nor deductive in nature. It is visualized that such a logic can be

based on the principle of included extremes. The principle would act as a guide in the

construction of conceptual structures which are meaningful and applicable. Since the con-

struction begins from known ‘facts’, it is impossible that the obtained concepts lack any

application, and therefore the visualized logic is epistemologically relevant. Most impor-
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tantly, since the potential of inversion in constructing possible states-of-affairs is great, it is

specially relevant in accessing the observationally inaccessible and ‘theoretically’ postulated

aspects of scientific knowledge. This approach if pursued further might lead to a better un-

derstanding of the relation between ‘facts’ and ‘theories’, as well as the role and the status

of ‘theoretical’ entities in science.

We have shown that meaning, symmetry, equilibrium etc., have epistemological sig-

nificance, because postulated theories that have these properties are seldom rejected by later

empirical methods of testing. Since truth is not the only epistemological value scientists care

for, epistemologists should reconsider the traditional view that the appraisal of a scientific

theory should be carried out only on the basis of whether it is verifiable or falsifiable. If our

argument and approach are correct the position would be epistemologically unique, because

this would be the strongest possible position of generativism ever proposed. Though Nickles

argued that the strongest possible justification of scientific knowledge is available from gener-

ative methods of justification, he expressed the opinion, following Peirce, that an ampliative

logic cannot be valid. As argued in Chapter 4, generativists should argue for broadening

the notion of validity to include inferences that preserve values other than truth. And this

view applies also to induction, which, we have argued, is based on the principle of excluded

extremes. Induction is valid because: first, it should be viewed primarily as an inference

involving concepts and therefore as an ampliative method of abstraction; and second, it is

impossible to generate gibberish by inductive means and therefore it is meaning preserving.

It is also impossible that by inverse reason one arrives at meaningless constructs, and

hence inverse reason is also meaning preserving. Apart from preserving meaning, its strong

point is its constructive potential in generating scientific knowledge of a highly abstract

kind. Apart from the considerations of meaning, other desirable values of structures such as

equilibrium and symmetry are impossible without inversion. There is therefore a necessary

connection between these features of science and inversion.

It is too early to demand or even to claim anything more than showing the possibility

and plausibility of the proposed alternative epistemological position. We have not formulated

all the rules of inverse logic, nor have we proved the validity of the inference. More work

needs to be carried out in this connection. However, here we wish to share the optimism that

such a rigorous formulation is indeed possible. In fact, we suspect that most of the rules of

inverse inference are already well known, and well entrenched in scientific practice; all that

we need to do is to excavate them from the body of scientific knowledge in which they are

embedded. Here are some examples.
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Modern science is inconceivable without algebra, an essential tool of mathematical

science. Modern algebra is formal, rigorous and content neutral, in the sense that the opera-

tions and the structures built by employing its methods require specific interpretation in the

context of application in order to make sense of the form. One of the fundamental principles

of inverse reason would be based on the ‘principle of balance’: when we add or subtract

anything to both sides of the balance, the equilibrium of the system remains unaffected. We

have an analogous principle in algebra which allows us to solve algebraic equations of vari-

ous degrees of complexity. By adding, subtracting, multiplying or dividing an equation on

both the LHS and the RHS of an equation we solve and simplify equations, and without this

method there is nothing like algebra. This transformation of an equation is as fundamental

to algebra as the rule of detachment is to deductive logic. Which is the principle of deductive

logic from which this principle of balance can be deduced? It is usually proved as a theorem

from other axioms, commonly called the law of cancellation in formal systems of arithmetic.

Terms in an equation can be moved from LHS to RHS or vice versa by using this law for

solving algebraic equations. This principle we claim is the heart of inverse reason, and since

it is self evident should be considered as one of the principles of constructive reason, rather

than as a theorem derivable from other axioms that are more remote and less self-evident

than this. The formal proofs are also not very direct, and hence far from being satisfactory.2

There are many other principles, such as

(∀x)(∃y)(x+ y = 0),

which are fundamental to inverse reason.3 This is again another principle of equilibrium

systems. All the terms in an equation add up to a ‘zero’, precisely because additive inverses

cancel out to yield a ‘null’. A similar principle also exists for multiplicative inverses with

‘unity’ as the identity. Whether it is the principle of inertia of dynamics, or mathematical

principles of the kind just mentioned, they must be analogous to a principle of balance.

We invariably notice that such principles become the foundations upon which the respective

inquiries are built. Therefore there is no reason why we should hesitate to generalize this as a

clear foundation for a constructive reason based on inversion and indeed an epistemologically

relevant one.

There are other branches of mathematics, such as vector algebra, in which we see

an in built principle of inverse reason. Vector algebra is an elegant method that simplifies the

2Cf. Suppes 1957, Introduction to Logic pp. 134–35, for a formal as well as an informal proof of the law for
addition. A similar law for multiplication is proved on pp. 148–149.

3This is introduced as axiom (8) of the fifteen in the Suppes’s text, op.cit. p. 129.
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method of ‘discovering’ invariant measures of magnitudes. Most quantities can be measured

in more than one manner, and with reference to different ‘frames’. We therefore get different

numbers when we use different ways of measurement. By employing the method of vector

algebra we can obtain an invariant value (‘number’) of the magnitude. In order to obtain an

invariant value of a vector magnitude a, a will be analyzed into three4 components ax, ay, az

corresponding to the three values in a Cartesian coordinate system. Important point to note

is that there exists a special relation between the three numbers ax, ay and az, which may

better be stated in the words of Feynman:

In order for it to be a vector, not only must there be three numbers, but these
must be associated with a coordinate system in such a way that if we turn the
coordinate system, the three numbers “revolve” on each other, get “mixed up” in
each other, by the precise laws [of vector algebra].5

Thus the methods employed in vector algebra are vital in obtaining a definite invariant

description of measurable dimensions. Since the connection between invariance, symmetry,

and inversion, is more or less necessary, we are hopeful of proving eventually the stated

interconnections.

With regard to Calculus the point is much more interesting due to the discovery

potential of the method. Integrability of differential equations, that are usually obtained as

a result of experimental work, is undoubtedly what a scientist always desires to achieve. The

question that should interest us is: Why do they aspire for integrability? An obvious answer

would be, because if such a method be available the problem solving in that field of inquiry

would become more or less analytic (automatic). Very soon such a field of inquiry would reach

a phase of research, which Kuhn would call normal science. That the two inverse method-

ological transformations, differentiation and integration, are vital to mathematical physics

hardly requires detailed argument. However, what needs to be explored is to excavate from

the body of calculus the rules that could enrich a logic of discovery based on inverse reason.

This excavation is necessary because in the present form the synthetic rules of mathemat-

ics are not explicitly stated. On the contrary it is claimed by many that mathematics is a

paradigm case of analytic reason.

Very little needs to be said about the usefulness of group theory in understanding the

properties of various kinds of symmetries possible in nature, and its relevance to the present

proposal, because here our argument would be straight forward. Still less needs to be said

about the necessity of inversion in group theory. Group theory has already become a ‘tool’

4The vector however could be analyzed in any number of dimensions.
5Feynman Lectures, op.cit. Chapter 11, p. 6.
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for discovering theoretical entities especially after Dirac’s famous discovery of the positron.

It will not be incorrect to say that without the involvement of group theory there could be

nothing like a field called particle physics. Again what needs to be explored in this context is

to search for an inferential pattern that must have enabled and would enable such discoveries.

Why is group theory essential in these fields of inquiry? What is the logically crucial inference

that becomes a part of the group theoretic method? It is high time philosophers of science

considered these methodological questions seriously. That a beginning has already been made

in this direction can be clearly seen from van Fraassen’s work on symmetry.

Thus we see that in the general ‘body’ of mathematics there are many principles of

a constructive nature that had better be separated out to see the in-built synthetic nature

of the discipline. We intend to take up this problem for further investigation to excavate

possible principles of inverse reason from the rules usually employed in mathematics.

Any thesis on inversion would be incomplete without the mention of Piaget, who has

already made use of the notion of groups in the development of his ‘genetic’ theory of intel-

lectual development. Inversion is central to his thought, where equilibrium and reversibility

are the prime factors determining the structures developed at various stages of development

starting from childhood to adulthood and even to geniushood. We share Piaget’s optimism

regarding the potential of group theory.

Groups are today the foundation of algebra. The range and fruitfulness of the
notion are extraordinary. We run into it in practically every area of mathematics
and logic. It is already being used in an important way in physics, and very likely
the day will come when it acquires a central role in biology as well. Clearly, then,
we should try to understand the reasons for the immense success of the group
concept.6

Piaget also specified that the nature of abstraction involved in group construction is qualita-

tively distinct from induction. Thus he says:

The primary reason for the success of the group concept is the peculiar—
mathematical or logical—form of abstraction by which it is obtained; an account
of its formation goes far to explain the group concept’s wide range of applicabil-
ity. When a property is arrived at by abstraction in the ordinary sense of the
word, “drawn out” from things which have the property, it does, of course, tell
us something about these things, but the more general the property, the thinner
and less useful it usually is. Now the group concept or property is obtained, not
by this sort of abstraction, but by a mode of thought characteristic of modern
mathematics and logic—“reflective abstraction”—which does not derive proper-
ties from things but from our way of acting on things, the operations we perform

6Piaget 1969, Structuralism, pp. 18–19.
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on them; perhaps, rather, from the various fundamental ways of coordinating such
acts or operations—“uniting,” “ordering,” “placing in one-one correspondence,”
and so on.7

A significant aspect of Piaget’s contribution is the role of actions/transformations/operations

etc.,. He has already demonstrated their potential in generating quantitative concepts, as

against the qualitative, in a number of quasi-empirical studies as a part of genetic epistemol-

ogy. This is another source of optimism about the applicability of the notion of inversion in

epistemology. As was made clear in the main text, we are envisaging precisely this possibility

of a logic that has this character of “reflective abstraction” (or Weyl’s “creative abstrac-

tion”), as based on the principle of included extremes. This to the best of our understanding

is the novel aspect of our proposal, i.e., to base the constructive logic on a principle that

is independent from that of deductive logic. This is in fact the major point of difference

between us and the other generative epistemologists, including Piaget. Though Piaget made

use of the relation inversion or reversibility in giving shape to his structuralism, he thought

that group theory can also be based on the principles of rationality. He thought that the

internal coherence of group theory emerges from the principles of rationality. He says that

inversion (reversibility) and associativity are the “restrictive conditions”. As a result of these

conditions “group structure makes for a certain coherence” governed by an internal logic of

a self-regulating system. So far there is no problem. But he continues by saying:

This self-regulation is really the continual application of three of the basic princi-
ples of rationalism: the principle of non-contradiction, which is incarnate in the
reversibility of transformations; the principle of identity, which is guaranteed by
the permanence of the identity element; and the principle, less frequently cited
but just as fundamental, according which the end result is independent of the
route taken.8

What is this “principle of non-contradiction” that Piaget has in mind? If the two other prin-

ciples with which he associated is any indication, then this principle should not be the usual

principle of non-contradiction. Another source of problem is that he has not distinguished

the two operations negation and inversion in the manner we have in this thesis. He says that:

the characteristic of structures belonging to the algebraic family is that “reversibil-
ity” takes the form of “inversion” or “negation” . . . .9

If these are any indications of the ‘confusion’ prevailing regarding the two different species

of opposition, then we have stated a point of great significance by distinguishing clearly the
7Ibid, p. 19.
8Ibid, p. 20.
9Ibid, p. 24.
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two species of opposites: one of them, negation, as a species responsible for the division of

opposites by following the principle of non-contradiction, and the other, inversion, responsible

for combining opposites by following the principle of included extremes.

But on the whole Piaget’s insightful observations on the development of intelligence

based on equilibrium and reversibility have been a constant source of encouragement.

IDEAS
that is

DESIGNATIONS or TERMS or STATEMENTS or PROPOSITIONS
CONCEPTS or THEORIES

may be formulated in
WORDS ASSERTIONS

which may be
MEANINGFUL TRUE

and their
MEANING TRUTH

may be reduced, by way of
DEFINITIONS DERIVATIONS

to that of
UNDEFINED CONCEPTS PRIMITIVE PROPOSITIONS

the attempt to establish
(rather than reduce)
by these means their

MEANING TRUTH
leads to an infinite regress

On the Analytico-synthetic Epistemology: We have already harped enough

on the two complementary aspects of reason that logic and epistemology should embody. Our

main proposal in this regard is to logically distinguish the two modes of thought. By analysis

we meant the assertive or postulational (or statemental) deductive mode of thought, and by

synthesis the nonassertive or conceptual (or non-statemental) abstractive mode of thought.

Further, analysis is non-ampliative, while synthesis is ampliative. The distinction is only

logical, and therefore not to be understood as independent thought processes whenever and

wherever they take place, i.e., not as spatio-temporally independent. The table which is re-

produced from Popper’s Conjectures and Refutations 10 represents the the two complementary

aspects of reason.

In the course of the development of scientific knowledge, we have seen frequent shifts

from the synthetic phase to an analytic phase. Before Euclid’s axiomatization of geometry

10p. 19.
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the phase of mathematics was mostly synthetic, but after him we observe a long period of the

analytic phase of Euclidian geometry. During the seventeenth and eighteenth centuries when

algebraic methods were beginning to influence mathematics in a major way, analytical rigor

seemed immaterial. But soon in the nineteenth century mathematics returned to the classical

ideal of the deductive-postulational (axiomatic) method. Are these shifts necessary for the

growth of scientific knowledge? The evidence that they are necessary is strong in the case

of mathematics. Courant and Robbins emphasize the complementary roles of analytic and

synthetic phases, with a warning regarding the prevailing over-emphasis on the deductive-

postulational character of mathematics.

True, the element of constructive invention, of directing and motivating intuition,
is apt to elude a simple philosophical formulation; but it remains the core of any
mathematical achievement, even in the most abstract fields. If the crystallized
deductive form is the goal, intuition and construction are at least the driving
forces. A serious threat to the very life of science is implied in the assertion
that mathematics is nothing but a system of conclusions drawn from definitions
and postulates that must be consistent but otherwise may be created by the free
will of the mathematician. If this description were accurate, mathematics could
not attract any intelligent person. It would be a game with definitions, rules
and syllogisms, without motive or goal. The notion that the intellect can create
meaningful postulational systems at its whim is a responsibility to the organic
whole, only guided by intrinsic necessity, can the free mind achieve results of
scientific value.11

The view that mathematics, or even that of the whole of scientific knowledge, is analytic

naturally promotes, in fact did promote, the impression that knowledge is unchanging. The

recent developments in the history of philosophy clearly changed the view that natural science

is not immune to changes and falsifications, for good. However we think that this change of

view seems to have affected only our views about natural science. We strongly think that

we need to change our views about mathematics, and even about logic. It is still widely

held that mathematics and logic are embodiments of analytic reason. The history of ideas

has enough evidence to prove this prevailing traditional understanding incorrect. No water

tight distinction between the formal sciences and the natural sciences can be maintained.

The analytic and synthetic modes of thought cut across this traditional distinction in the

sense that just as there are clear synthetic modes in mathematics and logic, there are clear

analytic modes in natural science. What is modern about modern logic without incorporating

the principles constructed by the constructive discipline of algebra? The same can be said

of modern mathematics. Therefore we think that there is a greater need to rethink our

11Courant and Robins, What is Mathematics? p. xvii.
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traditional dichotomies.

E.T. Bell has expressed rather evocatively the point that mathematics is not immune

to change. He says that

mathematics is not the static and lumpish graven image of chargeless perfection
that some adoring worshipers have proclaimed it to be.12

And he further says that

it is idle to pretend that what was good enough for our father in mathematics is
good enough for us, or to insist that what satisfies our generation must satisfy
the next.13

This comment we think should be extended to logic too. There is no reason why we should

continue to think that valid reason is that which preserves only truth. The history of ideas

provides strong evidence to the fact that in the course of the development of scientific knowl-

edge, truth has become more and more localized . It is more or less a ‘logical truth’ that

meaning has greater scope than truth, for the ‘set’ of possibilities is greater than the ‘set’

of actualities. Truth whenever and where ever it is realized must be after all a subset of

the large set of constructible possible worlds. Therefore, there is more sense in looking for

a method of constructing possible worlds than restricting our search for a ‘limited’ truth. If

this is really the situation then how can it be that a logic of constructing meaning is epis-

temologically irrelevant? There is sufficient reason, therefore, to direct our energy towards

articulating a logic that is valid by virtue of its capacity to preserve meaning. Truth anyway

is only local. This epistemological inversion from truth to meaning is vital to the version of

analytico-synthetic generativist epistemology that we are advancing.

Possible Future work: Our objective here is not to give an exhaustive list of

things that we intend to take up in future. What we intend to list here are some of the most

urgent things that we need to take up which would further strengthen the analytico-synthetic

epistemology. Here we shall mention only those that have not been mentioned above.

• The role played by analogies, metaphors, and models in the context of discovery is well

known. After all balance and pendulum are models. Is there any internal structure to

all the models, and analogies that science has been employing all along? How central

is inversion in constructing those analogies?

12Development of Mathematics op.cit. p. 171.
13Ibid, p. 172.
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• We have made the observation that inverse systematization and taxonomic system-

atization show mutually opposite tendencies. We have seen how central inversion is

in realizing invariant patterns of transformations. But scientists also employ another

method of systematizing proliferating variety, which we think is achieved by the method

of taxonomy. We could not present the generative potential of taxonomy, though in

the course of the research much time and thought was spent on this issue. By show-

ing the interrelationships between these two methodological themes, the two faces of

science—the discovery of more and more natural kinds and the invention of highly

general universalizing dimensions—can be clearly brought out.

• There are a number of episodes, as suggested in Chapter-6, in the development of

science that are amenable to a reconstruction based on inverse reason. This is not to

suggest that the case studies presented in the thesis are in a complete form that require

no further enrichment. We have considered in the present work only the case of the

genesis of an idea. The role of inverse reason in the development of scientific knowledge

also requires to be demonstrated, specially in the case of natural sciences, since there

is at least one clear case of the development of number theory in mathematics. In this

connection the relation of correspondence between two successive theories in a given

domain of inquiry and inversion requires to be investigated. If this can be achieved

then the similarity in the patterns of development of mathematics and natural science

can become more than a mere analogy.

• Inversion appears to be also prevalent in various social theories. Special reference should

be given to economic theories. Almost from the word ‘go’, economics is fashioned on

the idea of balance. Whether it is the capitalist models based on profit and loss, or

socialist models based on surplus value, whether it is the econometric input-output

analysis, . . . it is the model of equilibrium that animates entire economic thought.

Fruitful reconstruction of economic thought is therefore possible.
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Groups

Groups are abstract mathematical structures characterized by an operation satisfy-

ing certain conditions. A structure < G◦ > is a group iff

1. ◦ is an operation on set G and

2. ◦ is associative, and

3. G has a unique identity element, and

4. each element of G has unique inverse element.

An identity element is defined with respect to a given operation. If ◦ is an operation on a set

G, then e is the identity element with respect to ◦ iff

(∀x)[(x ∈ G)((x ◦ e = x) ∧ (e ◦ x = x))]

For example for the operation addition, +, 0 is the identity element, and for the operation

multiplication, ×, 1 is the identity element. Inverse elements are defined as follows: Let x

and y be any elements of a set G with operation ◦ and identity element e. The y is inverse

of x iff

(x ◦ y = e) ∧ (y ◦ x = e)

For example (−2 + 2 = 0) where 0 is the identity element for the operation +. (2× 1/2 = 1)

where 1 is the identity element for the operation multiplication. Given these definitions we

can show that the set of integers Z with the operation + will form a structure < Z,+ >

which is a group, because

1. for every x, y ∈ Z((x + y) ∈ Z), which means that the set Z is closed under the

operation +;
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2. for every x, y, z ∈ Z(x+ (y + z)) = ((x+ y) + z), i.e. + is associative;

3. there exists an element 0 ∈ Z, such that for any x ∈ Z(x+ 0) = (0 + x) = 0, i.e., 0 is

the identity element with respect to +; and

4. for any x ∈ Z there exists an element −x ∈ Z such that x+ (−x) = (−x) + x = 0, i.e.,

−x is inverse of x with respect to +.

The set of integers Z under the operation multiplication ×, does not form a group

because for any element x ∈ Z, x, may not have 1/x ∈ Z.
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The Model of Equilibrium in

Population Genetics

There are a large number of areas in biology where mathematics, specially statistics,

is used in order to make sense of the data in terms of certain correlations. While this is surely

a way of finding an application of mathematics, there exists another more interesting way

of applying mathematics, which is by building models of explanations helping to understand

the dynamics of certain systems. It is well known that Mendel used statistics to understand

the varying patterns of inheritance of certain selected characters from one generation to

another, ultimately leading to the formulation of what we today call the Mendel’s laws.

One of the conceptions developed by him is the conception of dominant and recessive genes

(‘factors’ to be true to Mendel’s description), the two influencing ‘forces’ of a character.

While the conception proved to be very useful in understanding the genetics of all diploid

organisms (organisms with a pair of genes for every character), it generated a problem for

the evolutionists who tried to apply genetics to the process of evolution.

The mechanism of heredity and variation, is basic to the study of evolution and both

evolutionists and geneticists in the beginning the century realized this.1 For the geneticists

the mechanisms of inheritance in both individual and population, constitute the problems of

study. But the evolutionists are mostly concerned about the latter problem, because evolution

has to do with the changes in populations, rather than in the individuals.

Population genetics deals with the dynamics of the genes in a population. Although

genes exist within individuals the fate of genes as well as individuals is actually linked to the

over all profile of the genetic constitution of the population.2

1Sturtevant 1965, A History of Genetics p. 107.
2‘Population’ is generally defined by geneticists as a group of sexually interbreeding or potentially inter-
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The genetic characterization of a population is generally carried out by measuring

the gene frequency. Gene frequency refers to the proportions of the different alleles of a

gene in a given population.3 It is estimated by counting the total number of organisms with

various genotypes in a given population.

Since there is a similarity between the genetic relationship between a parent and its

offspring on the one hand and a generation and its subsequent generation on the other, just as

an offspring’s genetic characters are determined by its parent’s genes, the gene frequency of

the subsequent generation will be determined by the gene frequency of the older generation.

Thus in populations, one could say, gene frequencies, rather than genes are inherited.4

Early studies on population genetics started by studying the application of Mendel’s

laws on populations of interbreeding individuals. The problem for population genetics can

be stated as follows: A small proportion of recessive features always exist in populations

without getting eliminated completely by the dominant features. For example, in the human

population, brown eyes are dominant over the blue, curly hair is dominant over straight hair,

etc. The proportion of frequency of these dominant to recessive features remains constant,

contrary to the common belief that the proportion of dominant features should increase over

time. Why doesn’t the dominant supplant the recessive?

The sort of problem that would interest an evolutionist, however, is different, though

both their problems get resolved ultimately by the same explanatory model. At the time of

Darwin, the hereditary material was believed to be a part of the blood, the child receives a

solution or an alloy of hereditary substance of the parents. One consequence of the blood

theory is that as a result of sexual reproduction any genetic variability tends to level off

over a period of time. This created a problem for Darwin, who admitted it, because for

evolution to occur variation was believed to be a necessary condition.5 To be consistent with

the theory of evolution Darwin proposed that the hereditary mechanisms should at least be

able to conserve the already available variations, if not increase the profile of variations. For

speciation to take place both conservation of variation and occurrence of new variations are

found necessary. Therefore, understanding the dynamics of genes in a population became a

major problem of investigation by the evolutionists and geneticists alike in the beginning of

the present century.

The early works of Yule in 1902, Castle in 1903, and Pearson in 1904 indicated that

breeding individuals.
3A pair of genes that are alternative to each other in heredity and are located at the same locus on the

homologous chromosomes are called alleles.
4Cf. Strickberger 1990, Genetics. p. 670.
5T. Dobzhansky 1955, Evolution, Genetics and Man p. 117.



323

..

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q 2 (tt)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q(t)

.6

.4

.6 .4
p(T) q(t)

p(T) p2 (TT)

pq(Tt)

pq(Tt)

Figure B.1: Genotypic frequencies generated under conditions of random mating for two

alleles, T and t

the proportion of the dominant and recessive genes in a population tends to stabilize, i.e.,

sum of frequency of occurrence of dominant genes p (TT ) and the frequency of occurrence

of recessive genes q (tt), remains a conserved or constant: p + q = 1.6 Later, in 1908,

Hardy and Weinberg, independently formulated the law of genetic equilibrium in a generalized

mathematical form by expanding the binomial (p+ q)2:

p2(TT ) + 2pq(T t) + q2(tt).

The significance of the law lies in postulating a state of ‘inertia’ (equilibrium). Accord-

ing to the law, gene frequencies and genotype ratios in large biparental populations reach

an equilibrium in one generation and remain constant there after unless disturbed by new

mutations, selection, migration, genetic drift etc. The statement clearly is analogous to the

Newton’s first law. The disturbing factors mentioned are essential for speciation (evolution).

The imbalance introduced by the disturbing factors will be balanced eventually. This model

of explanation is characteristic of dynamic systems in most parts of natural science. The

analogy with dynamic systems comes more clearly in the following description of the law by

a famous geneticist, Dobzhansky:

The Hardy-Weinberg theorem describes the statics [our mentioning] of a
Mendelian population. If all gene frequencies in all populations remained con-

6Sturtevant 1961, op.cit. pp. 107-108.
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stant, evolution would not take place. Evolution may be defined in a most general
way as a change in gene frequencies.7

The disturbing factors mentioned above are regarded as the dynamic forces.8

The Hardy-Weinberg law, however, is strictly valid only if several conditions are

fulfilled: (1) The population must be large, (2) there must be no mutation, (3) no selective

mating (i.e., there should be free interbreeding), (4) no selection, and (5) no migration. These

conditions, though, look like limitations regarding the applicability of the law, however, they

are indirectly stipulating the conditions to be met for evolution to take place. Briefly put:

upsetting the genetic equilibrium is necessary condition of evolution.

Further developments in the field depended, therefore, on the mathematical (alge-

braic) analysis of the effects of deviations from the above mentioned conditions. Haldane in

1924, Fisher in 1928, Wright in 1932 etc., have made studies that are largely mathematical

based on laboratory experiments, and not on naturally occurring wild populations, with the

exception of the work of Dobzhansky in 1937, whose work is on the laboratory populations9

According to Paul Thompson the case of population genetics “has been atypical

within biology in its use of mathematical descriptions”10 He argues that though biological

systems are complex, they can be ‘tamed’ only by the use of mathematical descriptions of the

dynamics of the systems. While it is easy to appreciate this, the methodological questions

remain to be answered. First, what is in the method of mathematics that ‘tames’ complexity?

Secondly, what situations can be rendered to mathematical analysis. It is the claim of our

thesis that wherever opposite ‘forces’, dominant and recessive genes in the above case, can

be obtained, it allows the possibility of defining a state of equilibrium, a neither-nor-state.

Since this definition by theoretical construction refers to an idealized state of affairs, it can

be employed to characterize indirectly the actual state of affairs, by contrast or comparison.

The ideal state becomes the invariant model , and the actual state becomes the variant case.

In science we find that this pattern of explanation is a recurring feature in almost all the areas

of scientific knowledge. In the above case we have seen how the variant case of evolution is

explained, though partially, by the use of an invariant model of equilibrium. In all such cases

the application of mathematics has been non-trivial, in the sense that without its use there

exists no hope of understanding the pattern in the complex and variable phenomena.

7Dobzhansky op.cit. pp. 118–119. Italics original.
8Ibid, p 119.
9Cf. Sturtevant 1961, op.cit. pp. 108–111.

10Paul Thompson 1992, “Mathematics in the Biological Sciences” in International Studies in the Philosophy
of Science p. 242.
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