

PS1 HBCSE Presentation

Converting 2D Images to 3D Model

Abhishek Kumar Aryesh Harshal Koya

INTRODUCTION

- What is Photogrammetry?
- How does it work?
- Comparison b/w openMVG-openMVS and Meshroom
- Code for extracting non-blurry frames from a video
- Turntable Design
- Controlling the turntable
- Insect Database
- Web app
- Documentation

How Does It Work?

Step 1 - Feature Detection and Matching (SfM)

Image Matching
Structure from Motion

Step 2 - Point Cloud Densification

Outcome

How?

- → Increases number of points
- → Gives clarity and detail

Step 3 - Mesh Reconstruction and Refinement

Reconstruction

- \rightarrow Any three points define a plane
- → Group of planes defines a surface

Refinement

- ➔ Decimation of the mesh
- → Lower computation time for texturing

Step 4 - Texture Application

Coloured Mesh

Software/Libraries

- openMVG and openMVS
- Meshroom
- COLMAP
- VisualSFM

openMVG - openMVS

openMVG - open Multiple View Geometry

• Provides an end-to-end 3D reconstruction from images

openMVS - open Multiple View Stereo

Sceaux Castle Dataset

Learnings: Familiarity with using openMVG-openMVS

Laptop Dataset

Learnings: More number of input images required with object in focus

Input Images clicked with phone

Output

Rubik's Cube Dataset

Learnings: Good lighting conditions and maximum overlap

ipg

IMG_20200528_151817036.

IMG_20200528_151856028. jpg

IMG_20200528_151821203.

IMG_20200528_151859512 jpg

IMG_20200528_151800602

IMG_20200528_151826767.

IMG_20200528_151901709 jpg

Pre-conditions for Images

- Acquiring a large data set
- Object well in focus
- Maximum overlap b/w consecutive images
- Maintaining constant height and distance from object
- Good Lighting Conditions

OpenMVG-OpenMVS Vs Meshroom

Meshroom Output

Conclusions

- Meshroom output was quicker(3-6x), but broken and not as good as openMVGopenMVS
- Only suitable for High resolution images
- To be used an intermediary for identifying deficits

OpenMVG-OpenMVS

Script for extracting images from videos

- Not feasible to take hundreds of photos
- Extracting images from a 360[°] video eases data collection task
- OpenCV used for extraction

Designing The Turntable

Revolving Camera

- No human interaction required
- Greater Stability
- Less space required
- Easier to assemble
- Camera remains stationary

Rotating Object

Designing The Turntable

Components

- Stepper Motor
- Clamp
- Shaft Coupler
- Turntable
- Fasteners
- Base

Stepper Motor Specs

Nema 17 Stepper Motor

Model No. - SY42STH47-1206A

- Holding Torque : 31.1 N.cm
- Rated Voltage : 4.0 V
- Rated Current : 1.2 A
- Motor Length : 40 mm
- Shaft Diameter : 5 mm
- Step angle : 1.8°

www.pololu.com

Other Components

Turntable

Clamp

Fastener

Shaft Coupler

Exploded Assembly

Controlling the turntable

- The turntable would be controlled using a NEMA 17 stepper motor
- The motor will be interfaced with a microcontroller(Nano) and driven using a DRV 8825 stepper motor driver

Testing 3D reconstruction on insects

Dataset

- Over 90 images of a spider were collected on a regular phone, at various angles
- Larger dataset was chosen due to low resolution of the insects body
- Photos were taken manually due to reduction in resolution from taking a video

Results

- The output, even after manual configuration, wasn't good due to low resolution of the insects body
- There was also a lack of background landmarks for the software to use for feature matching
- The result was only a couple of points being generated from the entire datasets, and a dense reconstruction failed due to less number of vertices
- For better results, one would need access to a high detail camera, which we didn't have access too

Microscope Stage

Producing Digital Terrain Models of microscopic images

Tilt Stage :

- ➤ ± 5° Tip and Tilt
- ➤ ± 10° Rotation
- Micrometer Positioning

TTR001

WHAT NEXT?

Web Application

🚖 🚺 NP 🥥 😫 🔏 🛪 🔕 🗄

Photo Grammetry

INSTRUCTIONS:

- · Object must be completely in focus in all the images
- At least 80% overlap should be there between every pair of consecutive images
- Object being captured should be properly lit / illuminated and not under very bright lights
- Distance between camera and the object should remain uniform for all photos in a sequence
- Images should be clicked in either clockwise/anticlockwise manner throughout the process
- Photos should be sequentially named i.e. in the same order in which they were clicked
- All the photos should be either JPG, PNG or JPEG format
- Even zipped files should contain above mentioned file formats

List of files selected for upload

- 1. Circuit Development for Cutting Tool (1).docx
- 2. Circuit Development for Cutting Tool (2).docx
- 3. Contact Information.csv (1).zip
- 4. Contact Information.csv.zip
- 5. default.png
- 6. Design_of_automatic_mobile_trolley_using_ultrasoni.pd
- 7. edit_cell.jpeg
- 8. how-to-upload-image-file-using-ajax-and-jquery.zip
- 9. index (1).php

Choose Files 21 files

Upload

Documentation

Link to our GitHub Repository

https://github.com/AbhishekKumar102K/Photogrammetry

운 Branch: master -		Go to file Add file ▼
AbhishekKumar102K committed 900db11 31 minutes ago		🕤 14 commits 🖇 1 branch 🛛 🛇 tags
Cube Dataset	Cube Dataset	12 days ago
FrameExtract	Add Frame Extractor	11 days ago
Img_upload	Photogrammetry Web app	31 minutes ago
Laptop Dataset	Laptop Dataset	12 days ago
Turntable CAD model	Turntable	yesterday
C README.md	Update README.md	1 hour ago

README.md

Algorithms Involved

Structure from Motion

Takes some images as input and outputs the camera parameters of each image as well as a rough 3D shape of the scene, often called the sparse point cloud. This is done by identifying features in each input image and matching these features between different pairs of images. The feature identification and matching step is crucial in photogrammetry.

GitHub

1 -----

Ø

"Thank You"