
Turtlebot
By:
1. Dhammapada

Mohapatra
2. Abhinand J Pai
3. Anubhav

Srivastava
4. Vodela Amith

Kumar

Mentors:
Prof.Nagarjuna G
Prof.Jude D’Souza
Mr.Ashish Kumar
Pardeshi
Mr.Ravi Sinha
Instructor: Rajib Ranjan
Maiti

Selection of Microcontroller:
• Microcontroller-Soul of Turtlebot (SoC (or) tiny computer).
• Designed to use almost all of its computational power.
• It executes the programs stored in its memory, manages other hardware

components of the robot.
• Commonly used ones are ESP32 and ATMega328P.
• In order to select one among these we are going to compare their

architectures, computational modules, peripheral modules, power modes
and costs of the microcontroller.

Feature ESP32(32-bit
MCU)

ATMega328P(8-bit MCU)

Architecture(Harvard/Von
Neumann)

Harvard Harvard

Architecture(CISC/RISC) Enhanced RISC Enhanced RISC

CPUs Xtensa LX6(Dual
Core)

AVR Core

SRAM(Internal) 520KB 2KB

Flash Memory 4MB 32KB

ROM 448KB 1KB

No of stages in pipelining 7 2

CPU speed Operating at
160/240 MHz

Operating at 16 MHz

MIPS(Million Instructions
Per Second)

Upto 600MIPS Upto 16MIPS

Computational Features

 Memory Architecture:

• Harvard Architecture: separate memories and buses for program and data.

• Von Neumann architecture: which uses same memory to store both
instructions and data so the data bus can be used either to fetch instructions or
to load data but both can’t be done at the same time.

 Instruction Set Architecture:

• RISC Architecture: RISC stands for Reduced Instruction Set Computer: This
is the computer which has small and simple instruction set which enables
processor to have fewer clock cycles per instruction thereby increasing the
speed.

• CISC Architecture: which has complex instructions along with simple
instructions which take more than one clock cycle for execution. Modern
processors are Enhanced RISC processors which have very few CISC
instructions.

• Harvard and Enhanced RISC architectures are common features of both
microcontrollers are both are intended to increase the computation speed.

• ESP32 is Dual core whereas ATMega328P is Single cored: Having two
processors enhances the performance over having a single processor as
multiple operations can be done at same time and Dual processors increase
MIPS(million instructions per second) .

• ESP32 has 7 stages of pipelining whereas ATMega328P has only 2
stages of pipelining: Pipelining is a technique in which multiple
instructions are overlapped in execution that is multiple instructions are
executed simultaneously. Since ESP32 has more stages of pipelining the
clock frequency is more than that of ATMega328P.

• The size of internal memory of ESP32 is larger(SRAM, Flash, ROM)
than that of ATMega328P.

Pipelining
Analogy

PERIPHERALS

Peripheral ESP32 ATMega328P

Bluetooth Link Controller Yes No

Bluetooth Baseband Yes No

WiFi MAC Yes No

RF module Yes No

WiFi Baseband Yes No

SD/SDIO/MMC Host
Controller

Yes No

SDIO/SPI Slave Controller Yes No

ULP Co processor Yes No

IR Remote Controller Yes No

DAC Yes(2) No

CAN Controller Yes No

Capacitive Touch Sensors Yes(10 Capacitive Sensing
GPIOs)

No

Hall Sensor Yes No

GPIO pins 34 25

Peripheral/Feature ESP32 ATmega328P

RTC Memory and RTC
peripherals

Yes No

I2S Controller Yes No

UART Yes Yes(USART)

SPI Yes(4) Yes

ADC Yes Yes

I2C Controller Yes Yes

Multiplier 32 bit multiplier 2 cycle Multiplier(8-bit)

Does it support Floating
point unit?

Yes No

Does it support DSP
instructions?

Yes No

Cryptographic Hardware
Accelerators

Yes No

LEDPWM Yes No

MCPWM Yes Yes

Mode Range of current

Operating voltage 1.8V-3.6V(3.3V -Typical
voltage)

Active mode 95mA-240mA(depending on
mode of operation)

Modem sleep mode 20mA-68mA(depending on
frequency and number of
cores)

Light sleep mode 0.8mA

Deep sleep mode 10uA/100uA/150uA

Hibernation mode 5uA

Power off mode 1uA

Power consumption
of ESP32:

Mode Range of current

Operating Voltage 2.7V-5.5V

Active Mode 1.5mA(3V,4Mhz)=6mA(linear
Interpolation to
16Mhz(operating frequency) as
typical characteristics are linear)

Power down mode 1uA at 3V

• Modem Sleep Mode : Communication
modules are disabled

• Light Sleep mode is similar to modem
sleep mode. In this during sleep time
CPU and peripherals are paused by
Clock gating so power consumption is
reduced.(function should be used).

• We need to use function to push into deep
sleep mode.

• In this mode power supply is cut-off to
Core(CPU and Memory) and peripherals which
were clock gated.

• ULP co processor, RTC(real time clock)
Memory and RTC Peripherals are active.

• The code required to be executed by processor
& Data recorded during this mode should be
stored in RTC memory.

Deep Sleep mode:

• Hibernation mode: In this mode power
supply to ULP Coprocessor and RTC
memory is cut-off.

• Some peripherals and RTC timer are
the only active modules whose function
is to wake up the ESP32 when required
this reduces even more power
consumption.

Block programming

 B Y A N U B H AV

TURTLEBOT –
ELECTROMECHANICA
L COMPONENTS AND
COMPLETE CODING
USING ARDUINO IDE
THROUGH
BLUETOOTH

HOW A STEPPER
MOTOR
WORKS?

• Each HIGH pulse sent,
energizes the coil,
attracts the nearest
teeth of the cogged
wheel and drives the
motor one step.

• The sequence of
pulses determines the
spinning direction of
the motor.

• The frequency of the
pulses determines the
speed of the motor.

• The number of pulses
determines how far the
motor will turn.

28BYJ-48 STEPPER MOTOR

• 4 coil unipolar
arrangement.

• Used in CNC
machines, precise
control movements,
security cameras etc.

• Power consumption of
motor is around
240mA.

• 2048 steps/rev.
• Max speed: 500

steps/s i.e. around 4s.
To compete one rev.

The DRV8825 stepper
motor driver has output
drive capacity of up to
45V and lets you control
one stepper motor at up
to 2.2A output current
per coil.

DRV8825 Motor
Driver

PINOUT
DETAILS

• VMOT & GND MOT supplies power for the
motor which can be 8.2V to 45V.

• Microcontroller’s ground should be common
with GND LOGIC pin.

• M0, M1 & M2 are step size(resolution)
selector inputs. By setting appropriate logic
levels to these pins we can set the motors to
one of the six step resolutions.

• STEP input controls the mirosteps of the
motor. Each HIGH pulse sent to this pin steps
the motor by number of microsteps set by
Microstep Selection Pins.

• DIR input controls the spinning direction of
the motor. Pulling it HIGH drives the motor
clockwise and pulling it LOW drives the motor
counterclockwise.

• EN Pin is active low input, when pulled
LOW(logic 0) the DRV8825 driver is enabled.

• SLP Pin is active low input. Meaning, pulling
this pin LOW puts the driver in sleep mode,
minimizing the power consumption.

• RST is also an active low input. When pulled
LOW, all STEP inputs are ignored, until you
pull it HIGH.

• FAULT goes LOW whenever the H-bridge
FETs are disabled as the result of over-
current protection or thermal shutdown.

• B2, B1, A1 & A2 are driver
output pins. These are
connected to the stepper
motor.

OVERVIEW

• DRAWING THE SCHEMATIC DIAGRAM USING KICAD.

• MAKING THE CONNECTIONS.

• WIRELESS CONTROL

• CONFIGURING BLUETOOTH ON ESP32

• SETTING UP STATION MODE USING WiFi ON ESP32.

• BATTERY MANAGEMENT SYSTEM.

• TESTING THE CODE FOR ACCURACY.

• LINKS

DRAWING SCHEMATIC DIAGRAM USING KICAD

Making the schematic more presentable

Using buses and net names

Editing The Symbol Library

MAKING THE CONNECTIONS
ESP32

28BYJ-48 5V STEPPER
MOTOR

SERVO MOTOR SG90

• Mblock : Python based open source software in which ESP32
device libraries are installed.

• We were able to connect the robot to this software but the code
wasn’t being uploaded on it(Due to fermata problem).

• It has a pen extension but it was only able to work with the
sprite. Pen extension cannot control servo.

• Upload mode: The program to be executed is compiled and
uploaded onto robot and robot executes the code without any
connection to the laptop.

• Live mode: interface sends commands one by one to the robot and
robot executes each command as it arrives. Robot remains
connected to the laptop and no compilation and uploading step.

• Advantage of Live Mode: As there is no compilation or uploading
step, we can create simple commands, see them execute and solve
the problems if any occurring while the command is executed.

• Upload mode is better when quick response from the
robot is needed as the code runs fast, latency will be
very less compared to live mode so that reaction is
quick.

• KB IDE: C++ based, open source by which we were
able to interface the robot.

• No option for creating new blocks.
• Pictoblox: Majorly based on Javascript through which

we were able to interface the robot.
• Not open source so can’t edit the source code to create

blocks but can create new blocks from existing blocks.
• Snap4Arduino:Javascript based open source software

but it was not compatible with ESP32 board.

• ESP32 is configured as Asynchronous Webserver as there is
no need for periodically executing the handle-client function
separately.(need not be active can automatically go to one of
the sleep modes for power saving.

• GET requests are being used to send data to server from
client.(less data no need of security for that data).

• Station Mode: ESP32 connects to existing WiFi network,
gets IP address from the server which we display on serial
monitor and this can be used for the webpages to be delivered
by MCU.

• SoftAP Mode: Microcontroller creates own WiFi network
with its own SSID and IP address . SoftAP as it is not wired.

• Advantage: Can operate irrespective of credentials of WiFi
local network.

WiFi Code

COMPLETE CODING ON ESP32 USING ARDUINO IDE – TURNING THE BOT AT ANY
ANGLE, EQUATION OF STRAIGHT LINE TO DRAWING GRAPH AND DRAWING

CIRCLE

#include "BluetoothSerial.h“

#include <AccelStepper.h>

#include <MultiStepper.h>

#include <Servo.h>

#include "math.h“
// Check if Bluetooth configs are enabled

#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)#error Bluetooth
is not enabled! Please run `make menuconfig` to and enable it#endif

String message;

int servoPin = 15; int f=1,b=1,r=1,l=1,ln=1,c=1;

AccelStepper motorL(1, steppin_L, dirpin_L);AccelStepper motorR(1, steppin_R, dirpin_R;
Multisteppers steppers;
 Servo servo; BluetoothSerial SerialBT; //Servo object, and Bluetooth
object

int steppin_L = 13;

int dirpin_L = 12;

int steppin_R = 14;

int dirpin_R = 27;

int steps_rev = 2048;

int dist = 13; //Distance between 2 wheels of turtlebot
float wheel_dia=2.8;

void setup() {

 servo.attach(servoPin);

 pinMode(steppin_L, OUTPUT);

 pinMode(dirpin_L, OUTPUT);

 pinMode(steppin_R, OUTPUT);

 pinMode(dirpin_R, OUTPUT);

 Serial.begin(115200);

 SerialBT.begin("ESP32"); // Bluetooth device name

 Serial.println("The device started, now you can pair it with
bluetooth!");}

String first_message=message.substring(0,2);
 String second_message=message.substring(3);
 int index_of_space = second_message.indexof(" ");
 if(index_of_space == -1){
 double x = second_message.toDouble(); // x is degrees
 } else{

 String third_message =
second_message.substring(0,index_of_space); //slope
 String fourth_message =
second_message.substring(index_of_space+1); //inter.
 double m = third_message.toDouble(); // m is slope
 double c = fourth_message.toDouble(); } // c is y-intercept

void loop() {
 // Read received messages
if (SerialBT.available()){
 String instr = SerialBT.readString();}
 int single_instr=instr.indexOf(',’);
 int last_instr=instr.indexOf('\n’);
 if(single_instr!=-1 &&
(f+b+r+l+ln+c)/6==1) {

message=instr.substring(0,single_instr);
 instr.remove(0,single_instr+1);
 }
 else {
 if(last_instr!=-1 &&
(f+b+r+l+ln+c)/6==1)
 message=instr; instr=""; }

• 1

• 2

if (first_message=="fd"){

 servo.write(90); //pen down

 forward(x);

 servo.write(0); //pen up

 message = "";

 SerialBT.print(“forward command
executed”);

 }else if (first_message=="rt"){

 servo.write(90); //pen down

 right(x);

 servo.write(0); //pen up

 message = "";

 SerialBT.print(“right command
executed”);

 }else if(first_message=="lt"){

 servo.write(90); //pen down

 left(x);

 servo.write(0); //pen up

 message = "";

 SerialBT.print(“left command executed”);

 } else if(first_message=="bd"){

 servo.write(90); //pen down

 backward(x);

 servo.write(0); //pen up

} else if(first_message=="ln"){
 line(m,c); message = "";
 SerialBT.print(“line command
executed”);
 } else if(first_message==“cl")
{
 circle(x); message = "";
 SerialBT.print(“circle
command executed”);
}}

• 3

void left(double degrees)
{

 double rotation =
degrees / 360;

 double distance = dist *
3.14 * rotation;

 int steps =
step(distance);

 digitalWrite(dirpin_L,
HIGH);

 digitalWrite(dirpin_R,
HIGH);

 for (int i = 0; i < steps;
i++)
{digitalWrite(steppin_L,
LOW);
digitalWrite(steppin_R,
LOW);
digitalWrite(steppin_L,
HIGH);
digitalWrite(steppin_R,
HIGH); delay(5); }}

void right(double
degrees) {

 double rotation =
degrees / 360;

 double distance = dist *
3.14 * rotation;

 int steps =
step(distance);

 digitalWrite(dirpin_L,
LOW);

 digitalWrite(dirpin_R,
LOW);

 for (int i = 0; i < steps;
i++)
{digitalWrite(steppin_L,
LOW);
digitalWrite(steppin_R,
LOW);
digitalWrite(steppin_L,
HIGH);
digitalWrite(steppin_R,
HIGH); delay(5); }}

void forward(double
distance) {

 int steps =
step(distance);

 digitalWrite(dirpin_L,
LOW);

 digitalWrite(dirpin_R,
HIGH);

 for (int i = 0; i < steps;
i++)
{digitalWrite(steppin_L,
LOW);
digitalWrite(steppin_R,
LOW);
digitalWrite(steppin_L,
HIGH);
digitalWrite(steppin_R,
HIGH); delay(5); }}

void backward(double
distance) {

 int steps =
step(distance);

 digitalWrite(dirpin_L,
HIGH);

 digitalWrite(dirpin_R,
LOW);

 for (int i = 0; i < steps;
i++)
{digitalWrite(steppin_L,
LOW);
digitalWrite(steppin_R,
LOW);
digitalWrite(steppin_L,
HIGH);
digitalWrite(steppin_R,
HIGH); delay(5); }}void circle(double r){

 double r1 = r - dist/2;

 double r2 = r + dist/2;

 int steps_L = step(2*3.14*r1);

 int steps_R = step(2*3.14*r2);

 long positions[2];

 positions[0] = steps_L;

 positions[1] = steps_R;

 steppers.moveTo(positions);

 steppers.runSpeedToPosition(); //
Blocks until all are in position

}

int step(float distance){

 int steps = distance * steps_rev / (wheel_dia *
3.1412);

 return steps;

}

All Functions

void line(double slope, double intercept){

 servo.write(0);
 // pen up

 int steps = step(intercept);

 if(intercept < 0){
 // for backward movement

 digitalWrite(dirpin_L, HIGH);
digitalWrite(dirpin_R, LOW);

 } else {
 // for forward movement

 digitalWrite(dirpin_L, LOW);

 digitalWrite(dirpin_R, HIGH); }

 for (int i = 0; i < steps; i++) {
 // moving to y-intercept

 digitalWrite(steppin_L, HIGH);

 digitalWrite(steppin_R, HIGH);

 delay(5);

 digitalWrite(steppin_L, LOW);

 digitalWrite(steppin_R, LOW);

 delay(5); }

double radians=atan(slope);

 double degrees = radians*180/3.14;

 degrees = degrees-90;

 if(degrees<0){
 // i.e. right rotation

 degrees = degrees*(-1);

 right(degrees);

 servo.write(90);
 // pen down

 forward(10); } else {
 // i.e. left rotation

 left(degrees);

 servo.write(90);
 // pen down

 forward(10); }}

WIRELESS CONTROL OF TURLEBOT

1. Bluetooth
• Bluetooth serial monitor can be used to control the bot.

2. WiFi
• Turtlebot can be controlled using a simple webpage.

Configuring Bluetooth for ESP32

Commands

• Forward- fd (dist. In cm.)

• Backward – bd (dist. In cm.)

• Right- rt (angle in degrees)

• Left – lt (angle in degrees)

• Line – ln (slope) (intercept)

• Circle- cl (radius)

Configuring Wi-Fi

• Station mode
• softAP mode

COMMANDS
• forward
• backward
• right
• left

BATTERY MANAGEMENT SYSTEM

18650 3.7V BATTERY TC4056
LIST

• 2 X 3.7V 3000mAhBATTERY IN
SERIES

• 2 X TC4056 CHARGING
MODULE

COMPONENTS CURRENT
REQUIREMENT

VOLTAGE
REQUIREMENT

ESP32 ~70mA 6V-12V
DRV8825 Depends on the motor >7.2V
28BYJ-48 STEPPER
MOTOR

260mA 5V

SERVO MOTOR SG90 ~150mA 3-6V
TOTAL ~740mA >7.2V

TESTING
Straight line test

Angle test

LINKS TO VIDEOS

Giving basic commands to turtle bot:
https://drive.google.com/file/d/1lqURgPejlmygs-NDymq2YInCCsQGx-_8/view?
usp=sharing

Straight line test
https://drive.google.com/file/d/12NjBvPkTxHSuO2kUyQ-ttJPAmx2gdVkI/view?
usp=sharing

Angle test
https://drive.google.com/file/d/182E2UXXKGur9vsdOEEpNczUd_yS9xaC5/vie
w?usp=sharing

The link for the video for setting up the WiFi on ESP32 is
https://drive.google.com/file/d/1_KRV_31bVkH0IzDSp_PRCWEgpMbcHOPk/v
iew?usp=sharing

https://drive.google.com/file/d/1lqURgPejlmygs-NDymq2YInCCsQGx-_8/view?usp=sharing
https://drive.google.com/file/d/1lqURgPejlmygs-NDymq2YInCCsQGx-_8/view?usp=sharing
https://drive.google.com/file/d/12NjBvPkTxHSuO2kUyQ-ttJPAmx2gdVkI/view?usp=sharing
https://drive.google.com/file/d/12NjBvPkTxHSuO2kUyQ-ttJPAmx2gdVkI/view?usp=sharing
https://drive.google.com/file/d/182E2UXXKGur9vsdOEEpNczUd_yS9xaC5/view?usp=sharing
https://drive.google.com/file/d/182E2UXXKGur9vsdOEEpNczUd_yS9xaC5/view?usp=sharing
https://drive.google.com/file/d/1_KRV_31bVkH0IzDSp_PRCWEgpMbcHOPk/view?usp=sharing
https://drive.google.com/file/d/1_KRV_31bVkH0IzDSp_PRCWEgpMbcHOPk/view?usp=sharing

LINKS FOR OUR VIDEOS

The link for WiFi control of the robot
1) Forward motion:
https://drive.google.com/file/d/14-rpY3t9FzSPlW_7IvS5MGizevIk8Cao/view?usp=dr
ivesdk
2) Backward motion:
https://drive.google.com/file/d/1li_B-5eQ-PNpNNRiwqN2KZFJyDKmZGaq/view?usp
=drivesdk

Turtlebot tries to draw ‘A’
https://drive.google.com/file/d/1TyyJFoYREN8ObCxuNGViKgtV5nu6_u5t/view?
usp=sharing

Turtlebot tries to draw a circle
https://drive.google.com/file/d/1AY-KWkjH9jjBOrNws6DDFNbZUIFBGZbY/view?usp=sh
aring

Turtlebot executing multiple commands sequentially
https://drive.google.com/file/d/1zIjFVV1Mzp06uLFbJJ4eIzD-28XZ1Gmr/view?usp=s
haring

https://drive.google.com/file/d/14-rpY3t9FzSPlW_7IvS5MGizevIk8Cao/view?usp=drivesdk
https://drive.google.com/file/d/14-rpY3t9FzSPlW_7IvS5MGizevIk8Cao/view?usp=drivesdk
https://drive.google.com/file/d/1li_B-5eQ-PNpNNRiwqN2KZFJyDKmZGaq/view?usp=drivesdk
https://drive.google.com/file/d/1li_B-5eQ-PNpNNRiwqN2KZFJyDKmZGaq/view?usp=drivesdk
https://drive.google.com/file/d/1TyyJFoYREN8ObCxuNGViKgtV5nu6_u5t/view?usp=sharing
https://drive.google.com/file/d/1TyyJFoYREN8ObCxuNGViKgtV5nu6_u5t/view?usp=sharing
https://drive.google.com/file/d/1AY-KWkjH9jjBOrNws6DDFNbZUIFBGZbY/view?usp=sharing
https://drive.google.com/file/d/1AY-KWkjH9jjBOrNws6DDFNbZUIFBGZbY/view?usp=sharing
https://drive.google.com/file/d/1zIjFVV1Mzp06uLFbJJ4eIzD-28XZ1Gmr/view?usp=sharing
https://drive.google.com/file/d/1zIjFVV1Mzp06uLFbJJ4eIzD-28XZ1Gmr/view?usp=sharing

TURTLEBOT
3 D M O D E L I N G

- D H A M M A P A D A M O H A P A T R A

• Firstly its a quantitative approach towards designing and
assembly of components.

• It gives exact position, relative position and distance,
orientation of various components in an assembly.

• Secondly it is quite easy for interpretation by any person
and give his/her feedbacks.

• Thus always giving a scope to rectify any error and
simultaneously providing opportunity for further
upgradation of the project.

• Hence always better than trial and error method of
approach.

IMPORTANCE AND NEED OF 3D
MODELING

• It is preferred to use Open Source software for the
project.

• For this purpose selection was made between Open S
CAD, BRL CAD, Free CAD and similar other software.

• On a personal note, I am comfortable with drag and drop
based approach of modelling and hence FreeCAD v0.18
was selected for 3D modeling.

SOFTWARE SELECTION

• Entire 3D modeling was divided into 5 parts:

1. A primary and rough chassis design (subjected to
changes at every next stage)

2. Electro-Mechanical assembly

3. Electrical assembly

4. Battery management system

5. Pen lifting and lowering mechanism

WORK FLOW

 Various chassis design were made initially and on basis of following
constraints selection was made:

1. Weight and torque balancing

2. Specific orientation of mechanical & electro -mechanical equipments

3. Geometry of components

• A selected design drawn on orthographic paper is attached in the
next slide

• Also in the figure, additive tolerance of one to two millimeters is
given o the components.

ROUGH DESIGN OF CHASSIS

PROPOSED 20X20 CM CHASSIS

CHANGES IN CHASSIS DESIGN

Basic design

CHANGES IN CHASSIS DESIGN

Chassis with holes :
Front : Caster Ball : M2
Rear : stepper motor brackets : M5

CHANGES IN CHASSIS DESIGN

With added holes for pen lifting and lowering techniques

CHANGES IN CHASSIS DESIGN

With added cut on lower support wall to accommodate servo motor

• It involves attachment of wheels, caster ball, stepper motor, support
brackets with the chassis via fasteners

• Assembly: https://youtu.be/6wjJIstEaW0
• Exploded assembly : https://youtu.be/zw7gvPr8HGQ

ELECTRO MECHANICAL ASSEMBLY

https://youtu.be/6wjJIstEaW0
https://youtu.be/zw7gvPr8HGQ

ELECTRO MECHANICAL ASSEMBLY

• It involves electrical parts –
• ESP 32 DEVKITC (Micro-controller)
• Motor Driver (DRV8825)
• Breadboard (170.5X 63.1X 8.4 mm)

ELECTRICAL ASSEMBLY

• Complete design was done on basis of attached
dimension

DESIGN OF BREADBOARD

• A lot of variables were missing and gave rise to errors

1. Dimension of single hole is missing

2. Position of at least one hole from either the ends are
missing

3. Inter-distancing of holes of various rows and columns
are missing

• Design of breadboard :
• https://youtu.be/nMw-iiXcBq8

DESIGN OF BREADBOARD

https://youtu.be/nMw-iiXcBq8

ELECTRICAL ASSEMBLY

• For this purpose we used TC4056 charging module, Li
ion battery (3.7v) and a battery holder.

BATTERY MANAGEMENT SYSTEM

BATTERY MANAGEMENT SYSTEM

• Sliding mechanism were preferred.
• Assembly of servo motor with mechanism.

PEN LIFTING AND LOWERING
MECHANISM

• Another mechanism i.e. Rack and pinion mechanism was
also proposed

• It involves a spur gear (pinion) and a toothed slider called
as rack. Gear is attached to servo motor and it meshes
with rack. It also has a casing for rack to fix its position.

PEN LIFTING AND LOWERING
MECHANISM

• Out of the two mechanism sliding was preferred because
as in case of rack and pinion mechanism, there is a
higher probability that it may not work either due to lack
of meshing (even a bit of inaccuracy may lead to failure)
and other factors like over and undercutting of meshed
tooth.

PEN LIFTING AND LOWERING
MECHANISM

RESULT: COMBINED ASSEMBLY WITH
FASTENERS ATTACHED

RESULT: COMBINED ASSEMBLY WITH
FASTENERS ATTACHED

• Thick wheels were preferred to increase friction and
reduce the momentum of bot thus allowing a smooth and
non-sliding turn.

• Discussion were held on orientation of pen holding part
(i.e. tilt or no tilt) and its impact on friction . In conclusion
the weight of pen is balanced by pen holding part and
not by ground. Thus it’s a zero normal contact and hence
weight of pen doesn’t play in determining friction.

SOME OTHER IMPORTANT POINTS

• https://youtu.be/nMw-iiXcBq8 - breadboard design 1
• https://youtu.be/Kqc17-Jy2LI - breadboard 2/electrical assembly
• https://youtu.be/WBas0Xoxg9Q - electrical and electromechanical

assembly
• https://youtu.be/Vnx021O-YiY - wheel design
• https://youtu.be/UswX56JsxDY - 9V dc battery design
• https://youtu.be/pRFn5OuC8Yc - exploded trial assembly (prefinal)
• https://youtu.be/6wjJIstEaW0 - electro-mechanical assembly
• https://youtu.be/zw7gvPr8HGQ - exploded electromechanical assembly
• https://youtu.be/dIWP_I81fDU - exploded electrical assembly
• https://youtu.be/EHoBY8gCtp8 - exploded assembly pre-final
• https://youtu.be/eRUBuXxHkuU - exploded assembly final
•

LINKS FOR DESIGN AND ASSEMBLY:

https://youtu.be/nMw-iiXcBq8
https://youtu.be/Kqc17-Jy2LI
https://youtu.be/WBas0Xoxg9Q
https://youtu.be/Vnx021O-YiY
https://youtu.be/UswX56JsxDY
https://youtu.be/pRFn5OuC8Yc
https://youtu.be/6wjJIstEaW0
https://youtu.be/zw7gvPr8HGQ
https://youtu.be/dIWP_I81fDU
https://youtu.be/EHoBY8gCtp8
https://youtu.be/eRUBuXxHkuU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	How a Stepper motor works?
	28BYJ-48 Stepper Motor
	Slide 23
	Pinout details
	OVERVIEW
	DRAWING SCHEMATIC DIAGRAM USING KICAD
	Making the schematic more presentable
	Using buses and net names
	Editing The Symbol Library
	MAKING THE CONNECTIONS
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Wireless control of Turlebot
	Configuring Bluetooth for ESP32
	Slide 49
	Slide 50
	Commands
	Configuring Wi-Fi
	Slide 53
	Slide 54
	BATTERY MANAGEMENT SYSTEM
	TESTING
	Angle test
	Links to videos
	Links for our videos
	Slide 60
	Importance and need of 3D modeling
	Software Selection
	Work flow
	Rough design of chassis
	Proposed 20X20 cm chassis
	Changes in Chassis design
	Changes in Chassis design
	Changes in Chassis design
	Changes in Chassis design
	Electro mechanical assembly
	Electro mechanical assembly
	Electrical Assembly
	Design of Breadboard
	Design of Breadboard
	Electrical Assembly
	Battery management system
	Battery management system
	Pen Lifting and Lowering Mechanism
	Pen Lifting and Lowering Mechanism
	Pen Lifting and Lowering Mechanism
	Result: Combined assembly with fasteners attached
	Result: Combined assembly with fasteners attached
	Some other important points
	Links for design and assembly:

