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We propose a continuum model  for  the degree distribution of  directed
networks in free and open-source software. The degree distributions of
links in both the in-directed and out-directed dependency networks fol-
low Zipf’s law for the intermediate nodes, but the heavily linked nodes
and the poorly linked nodes deviate  from this  trend and exhibit  finite-
size  effects.  The  finite-size  parameters  make  a  quantitative  distinction
between  the  in-directed  and  out-directed  networks.  For  the  out-degree
distribution,  the  initial  condition  for  a  dynamic  evolution  corresponds
to  the  limiting  count  of  the  most  heavily  linked  nodes  that  the  out-
directed  network  can  finally  have.  The  number  of  nodes  contributing
out-directed links grows with every generation of  software release,  but
this  growth  ultimately  saturates  toward  a  terminal  value,  due  to  the
finiteness of semantic possibilities in the network. 

1. Introduction

Scale-free distributions in complex networks [1–9] span across diverse
domains like the World Wide Web [1, 10] and the internet [1], social,
ecological,  biological,  and linguistic  networks  [6],  trade  and business
networks  [11],  and  syntactic  and  semantic  networks  [12–14].  Scale-
free features  have also been discovered in electronic circuits  [15] and
in the architecture of computer software [16]. The structure of object-
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 p       j
oriented  software  is  a  heterogeneous  network,  characterized  by  a
power-law  distribution  [17],  and  it  is  on  the  basis  of  scale-free  net-
works that software fragility is explained [18]. Power-law features ex-
ist in the inter-package dependency networks in free and open-source
software  (FOSS)  [19],  and  studies  have  shown  that  modifications  in
this  type of  software network also follow a power-law decay in time
[20, 21].  

Continuing  on  the  software  theme,  while  installing  a  software
package from the Debian GNU/Linux distribution, many other pack-
ages,  known as the “dependencies,” are needed as prerequisites.  This
leads  to  a  dependency-based  network  among  all  the  packages,  with
each of these packages being a node in a network of dependency rela-
tionships. Each dependency relationship connecting any two packages
(nodes)  is  a  link  (an  edge),  and  every  link  establishes  a  relation  be-
tween a prior package and a posterior package, whereby the functions
defined in the prior package are invoked in the posterior package. So
what emerges is a semantic network with a directed flow of meaning,
determined by the direction of the links. 

Semantic networks are a subject of major interest, especially where
small-world structures [22] and scale-free aspects [6] of networks are
concerned [14]. With particular regard to component-based software,
a  semantic  relationship  among  components  underlies  the  network  of
what  are  known  as  strong  dependencies  [23].  The  components  of  a
FOSS  network  are  interconnected  by  various  relationships  (including
a  negative  one,  “conflicts”),  and  only  one  of  these  is  based  on  the
field  “depends.”  This  again  is  further  categorized  into  the  two  cases
of strong dependencies and direct dependencies, with a correlation be-
tween  the  two  cases  [23].  As  regards  direct  dependencies,  the  scale-
free character of the Debian GNU/Linux distribution has been studied
[19, 24]. 

In our study, the semantic network of nodes in the Debian distribu-
tion is founded on one single principle running through all the nodes:
Y  depends  on  X;  its  inverse:  X  is  required  for  Y.  The  semantic  net-
work  so  formed  is  a  straightforward  dependency-based  directed
network only. Considering any particular node in such a directed net-
work,  its  links  (the  relations  with  other  nodes)  are  of  two  types,
incoming links and outgoing links, as a result of which there will arise
two distinct types of directed networks [6]. For the network of incom-
ing links in the Etch release of Debian, one study [24] has empirically
tested  Zipf’s  law  in  the  GNU/Linux  distribution.  This  is  a  phe-
nomenon  discovered  originally  in  the  occurrence  frequency  of  words
in  natural  languages  [25]  that  has  over  the  years  emerged  widely  in
many other areas. 

Our work affirms the existence of Zipf’s law as a universal feature
underlying the FOSS network. Here, in fact, both the networks of in-
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coming and outgoing links follow Zipf’s law. However, simple power-
law properties  do not suffice  to provide a complete  global  model  for
directed  networks.  For  any  system  with  a  finite  size,  the  power-law
trend is not manifested indefinitely [26, 27], and for a FOSS network,
this matter awaits a thorough investigation [24]. Deviations from the
power-law trend appear for both the profusely linked and the sparsely
linked  nodes.  The  former  case  corresponds  to  the  distribution  of  a
disproportionately  high number of  links  connected to a  very few im-
portant nodes (the so-called “hubs” or rich nodes/top nodes). The par-
ticular  properties  of  all  these  outlying  nodes,  as  well  as  any  distin-
guishing  characteristic  of  the  two  directed  networks,  can  only  be
known  by  studying  the  finite-size  effects  (equivalently  the  saturation
properties) in the respective networks [28] and by understanding how
these  effects  are  related  to  the  semantic  structure  in  the  network.
These are the principal objects of our investigation. 

2. A Nonlinear Continuum Model

The main advantage of  the Debian GNU/Linux distribution is  that  it
is  the largest  component-based system that can be accessed freely for
study  [23].  The  mathematical  modeling  of  this  FOSS  network  has
been  carried  out  here  primarily  with  the  help  of  data  collected  from
the  two  stable  Debian  releases,  Etch  (Debian  GNU/Linux  4.0)  and
Lenny  (Debian  GNU/Linux  5.0),  available  at  http://www.debian.org/
releases.  The  networks  of  both  the  incoming  links  and  the  outgoing
links span about 18 000 packages (nodes) in the Etch release, while in
the  Lenny  release,  the  corresponding  number  of  packages  is  about
23 000. For this work, the chosen computer architecture supported by
both the releases is AMD64. The dynamic features of the model have
further  been  grounded  on  the  first  three  generations  of  Debian  re-
leases,  that  is,  Buzz  (Debian  GNU/Linux  1.1),  Hamm  (Debian
GNU/Linux 2.0),  and Woody (Debian GNU/Linux 3.0),  all  of  which
are  supported  by  the  architecture  i386.  The  model  founded  with  the
help of the Etch and Lenny releases shows a retrospective compatibil-
ity with the earlier releases, and moving forward in time, it is also in
consonance  with  the  features  shown  by  the  latest  stable  Debian  re-
lease,  Squeeze (Debian GNU/Linux 6.0),  which is  again based on the
AMD64 architecture. The graphical results presented in this paper are
based  mostly  on  the  three  latest  releases,  Etch,  Lenny,  and  Squeeze.
All  of  these  releases  have  a  substantial  number  of  nodes  and  links,
and even though these numbers are to be counted only discretely, the
largeness  of  their  total  count  allows  a  continuum  description  to  be
adopted, using a differential equation. 
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For developing the model,  we need to count  the actual  number of
software  packages  f  that  are  connected  by  a  particular  number  of
links  x  in  either  kind  of  network.  This  gives  an  unnormalized  fre-
quency  distribution  of  f ª f HxL  versus  x.  Normalizing  this  distribu-
tion  in  terms  of  the  relative  frequency  distribution  of  the  occurrence
of  packages  would  have  yielded  the  usual  probability  density  func-
tion. To provide a continuum model for any power-law feature in this
frequency distribution, we posit a nonlinear logistic-type equation, 

(1)Hx + lL d f

d x
! afH1 - hfmL,

in which a is a power-law exponent, m is a nonlinear saturation expo-
nent, h is a “tuning” parameter for nonlinearity, and l is another pa-
rameter  that  is  instrumental  in  setting  a  limiting  scale  for  the  poorly
connected  nodes.  The  motivation  behind  this  mathematical  prescrip-
tion can be easily followed by noting that when h ! l ! 0, there will
be a globally valid power-law distribution. However, when the distri-
bution is finite, the power-law trend fails to hold true beyond interme-
diate scales of x.  Such deviations from a full  power-law behavior are
especially  prominent  for  high values  of  x  (related  to  the  very  heavily
connected nodes), and therefore, it can be argued that finiteness in the
distribution is closely related to its saturation. This type of saturation
behavior  is  frequently  modeled  by  a  nonlinear  logistic  equation  [29,
30], and so, to understand the saturation properties of the highly con-
nected  nodes  in  the  Debian  network,  it  will  be  necessary  to  under-
stand the part played by nonlinearity.  

Integration of  equation (1),  which is  a  nonlinear differential  equa-
tion,  is  done  by  making  suitable  substitutions  on  fm  and  x + l,  fol-
lowed  by  the  application  of  partial  fractions.  After  that  we  get  the
integral solution of equation (1) as (for m ! 0) 

(2)f HxL ! h +
x + l

c

-ma -1êm
,

where  c  is  an  integration  constant.  Evidently,  when  h ! l ! 0  (with
the former condition implying the absence of nonlinearity), there will
be  a  global  power-law  distribution,  going  as  f HxL ! Hx ê cLa,  regard-
less of any nonzero value of m. The situation becomes quite different,
however,  when  both  h  and  l  have  nonzero  values.  In  this  situation,
the network will exhibit a saturation behavior on extreme scales of x
(both low and high). For high values of x,  this can be easily appreci-
ated from equation (1) itself, from which the limiting value of f is ob-

tained as f ! h-1êm.  
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3. Model Fitting of the Free and Open-Source Software Network

The parameters a, m, h, l, and c in the solution given by equation (2)
can now be fixed by the distribution of links and nodes in the Debian
repository. In Figure 1 the degree distribution of incoming links in the
Etch release is plotted. The dotted straight line in this log-log plot indi-
cates a purely power-law behavior. While this gives a satisfactory de-
scription  of  the  distribution  on  intermediate  scales  of  x,  there  is  a
clear  departure  from the  power  law  both  as  xö0  and  xö¶.  The
solution given by equation (2) fits the power law, as well as the depar-
ture  from it,  at  both the  small-connectivity  and the  high-connectivity
ends.  Among  all  the  parameters,  the  values  of  a  and  m  remain  un-
changed  while  modeling  the  degree  distribution  of  outgoing  links,  as
shown in the plot in Figure 2.  The obvious implication of a ! -2 in
both  the  cases  is  that  Zipf’s  law  universally  underlies  the  frequency
distribution of the intermediate nodes and links in both kinds of net-
works. The only quantitative measures to distinguish between the two
networks are the values of h, l, and c.  

Figure 1.  For the network of incoming links in the Etch release, the degree dis-
tribution shows a good fit in the intermediate region with a power-law expo-
nent a ! -2 (as indicated by the dotted straight line), which validates Zipf’s
law.  However,  for  large  values  of  x,  there  is  a  saturation behavior  toward a
limiting  scale  that  is  modeled  well  with  the  parameter  h ! -8.  When  x  is
small,  the fit  is good for l ! 1.5. The global fit  becomes possible only when
m ! -1,  which  turns  out  to  be  a  universally  valid  number.  For  this  specific
plot, the data is fitted by c > 190.
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Figure 2.  For the network of outgoing links in the Etch release, the degree dis-
tribution of  intermediate  nodes  is  again  modeled  well  by  a  power-law expo-
nent a ! -2 which is Zipf’s law (as the dotted straight line shows). However,
the saturation behavior of the top nodes is different from that of the network
of  incoming links.  There is  a  clear  convergence of  f  toward a limit  given by
h ! 1 (with m  remaining unchanged at -1). For the poorly linked nodes, the
convergence  is  attained  for  l ! 0.25.  Thus,  when a  and m  remain  the  same,
the value and the sign of h, as well as the value of l, distinguish the type of a
dependency network.  The data  is  fitted for  c > 80.  A solitary  top node is  to
be seen for x ! 9025.

Similarly, data from the Lenny release has been plotted in Figures 3
and 4.  The  former  plot  gives  the  in-degree  distribution  of  the  nodes,
while  the  latter  gives  the  out-degree  distribution.  The  values  of  h,  l,
and c in the in-degree distribution of the Lenny release change with re-
spect to the previous release, Etch. With changing values of these par-
ticular parameters, the saturation properties in the in-degree distribu-
tion, therefore, undergo a significant quantitative change at the highly
connected  end.  In  contrast,  for  the  out-degree  distribution,  the
changes across a new generation of Debian release are fitted by vary-
ing the values of l  and c.  The fact that h  remains the same as before
while  l  changes  implies  that  the  saturation  properties  remain  un-
changed at the richly linked end, but change at the poorly connected
end.  Changes  in  the  value  of  c  for  a  particular  degree  distribution
cause a translation of the model curve in the x–f  plane. And, as Fig-
ures  1  through  4  indicate,  Zipf’s  law  prevails  in  all  the  cases  with
a ! -2. 
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Figure 3.  For the network of incoming links in the Lenny release, the interme-
diate  nodes  (fitted  with  a  power-law  exponent  a ! -2)  uphold  Zipf’s  law
once again. For large values of x, however, the saturation behavior toward a
limiting scale of f is modeled by the value h ! -15. When x is small, the fit is
good  for  l ! 1.6.  Once  again  m ! -1,  but  for  this  particular  plot,  c > 210.
The  richly  linked  nodes  here  are  less  connected  than  they  are  in  the  case  of
the Etch release.

Figure 4.  For the network of outgoing links in the Lenny release, the distribu-
tion  of  intermediate  nodes  obeys  Zipf’s  law,  as  the  power-law  exponent
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a ! -2 shows. The saturation behavior of the top nodes remains the same as
it is for the Etch data. The convergence of f toward a limit set by h ! 1 is evi-
dent, with m ! -1 as before. For the poorly linked nodes, the convergence is
given by l ! 0.35. The other value that distinguishes the out-degree distribu-
tion in the Lenny release from that in the Etch release is c > 90. A solitary top
node is to be seen for x ! 10 446.

To  appreciate  the  mathematical  implications  of  obtaining  m ! -1
from the data, a power-series expansion of equation (2) has to be car-
ried out, leading to the infinite series, 

(3)

f HxL !
x + l

c

a

-
h

m

x + l

c

a Hm+1L
+

m + 1

2

h

m

2 x + l

c

a H2 m+1L
+! ,

from which it  is  not  difficult  to  see  that  a  self-contained and natural
truncation  for  this  series  can  only  be  achieved  when m ! -1.  This  is
necessary  if  the  scale-free  character  of  the  distribution  is  to  be  pre-
served; otherwise, with m ! 1, different terms in equation (3) will  be-
come  dominant  on  different  scales  of  x.  It  is  remarkable  that  the
Debian  data  conforms  to  this  fact,  and  consequently,  with  m ! -1,
equation (1) is reduced to a linear, first-order, nonhomogeneous equa-
tion,  

(4)
d f

d x
-

a

x + l
f ! -

ha

x + l
,

in which h plays the role of a nonhomogeneity parameter.  
With  m ! -1 (implying  a  power-law in  the  distribution)  and  with

a ! -2  (implying  that  the  power-law  is  specifically  Zipf’s  law),  the
saturation properties of the network (for any value of h and l) can be
abstracted from equation (2) as 

(5)f HxL ! h +
c

x + l

2
.

One implication of the foregoing result is that nonhomogeneity in the
system sets a firm lower bound to the number of rich nodes in the sat-
uration  regime,  regardless  of  any  arbitrarily  high  value  of  x;  that  is,
föh  as  xö¶.  In  other  words,  nonhomogeneity  defines  a  finite
lower  limit  to  the  discrete  count  of  the  rich  nodes.  This  clear  devia-
tion  from  the  power-law  model  enables  a  few  top  nodes  in  the  net-
work  of  outgoing  links  to  get  disproportionately  rich,  as  shown  in
Figures 2 and 4. All the links from these top nodes are outwardly di-
rected  toward  the  dependent  nodes,  making  the  presence  of  these
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richly linked nodes an absolute necessity and burdening them with the
responsibility of maintaining functional coherence in the FOSS distri-
bution.  

A scale for the onset of the saturation effects in the network of out-
degree  distributions  can  be  found  when  the  two  terms  in  the  right-
hand side of equation (2) are in rough equipartition with each other.
This  will  set  a  scale  for  the  saturation  of  the  number  of  links  in  the
frequency distribution as 

(6)xsat >
c

†h§ - l.

Considering  the  out-degree  distribution in  particular,  it  is  always  the
case that  h ! 1.  From the fitting function,  noting that  l ` c,  we can
also conclude that xsat ~ c, a simple result that is useful in identifying
the  nodes  that  act  as  “hubs”  and  deviate  from  a  scale-free  distribu-
tion. All nodes with a number of links of the order of xsat  or greater
will  belong  to  this  saturation  regime.  For  the  network  of  outgoing
links, the Debian data indicates that approximately the top 1% of the
nodes fall within this scale, with the package libc6 being the most pro-
fusely connected node in all the releases. 

The  situation  is  quite  the  opposite  for  the  network  of  incoming
links, as Figures 1 and 3 show. Here the nodes draw in links to them-
selves,  with  all  links  being  inwardly  directed  toward  the  nodes.  This
network  of  incoming  links  is  complementary  in  character  to  the  net-
work  of  outgoing  links.  As  a  result,  the  richly  linked  nodes  of  the
latter network are poorly connected in the former. In contrast to Fig-
ures 2 and 4, which indicate that the rich nodes serve the network to
an extent that is disproportionately greater than what a simple power-
law behavior would have required of them, we see from Figures 1 and
3  that  the  most  richly  linked  nodes  in  the  in-degree  distribution  dis-
play  a  behavior  that  falls  short  of  what  might  be  expected of  a  fully
power-law  trend  (the  top  nodes  here  ought  to  have  accreted  more
links if a power law only were to have been followed). So decreasing
values  of  h  over  two  generations  of  Debian  releases  show that  for  a
given  number  of  links  x,  the  count  of  nodes  f  is  reduced.  It  is  then
clear that the ability of the top nodes to acquire links in the in-degree
distribution becomes progressively weakened (and so it is that the de-
viation from the power-law behavior becomes sharper). Saturation in
the network can also be quantitatively determined by the parameter h,
which, when m ! -1, appears as a nonhomogeneity condition in equa-
tion  (1).  The  value  and  especially  the  sign  of  h  afford  us  a  precise
means to distinguish the directed network of incoming links from that
of outgoing links. The difference in the respective degree distributions
in Figures 1 and 2 (or Figures 3 and 4) underscores this fact. 
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For small values of x, the poorly linked nodes also deviate from the

power-law solution.  This  is  especially  true  for  the  in-degree  distribu-
tion  in  Figures  1  and 3.  For  small  in-degree  and out-degree  distribu-
tions  in  the  World  Wide  Web [31],  an  improved fit  is  obtained by a
simple modification in the global power-law model [1, 27]. This type
of modification can also be engineered in equation (5) to obtain a sim-
ilar fit for the weakly linked nodes. In the limit of small degree distri-
butions  for  both  the  in-directed  and  out-directed  networks,  where  h
ceases to have much significance, and where x ~ 1 (which, in the dis-
crete count of links, is the lowest value that x can assume practically),
an upper  bound to the number of  the  sparsely  linked nodes  is  found
to be 

(7)fub >
c

1 + l

2
,

with the full range of f, therefore, going as h § f d fub.  

4. Modeling Evolution and Saturation

Our model, based on two generations (Etch and Lenny) of a standard
FOSS network  (Debian),  has  shown that  the  saturation  properties  of
the  in-degree  and  the  out-degree  distributions  are  differently  affected
as time passes (marked by new releases of Debian). The degree distri-
bution  of  the  network  of  outgoing  links  shows  no  change  when  it
comes  to  the  model  fitting  of  the  top  nodes  (h  maintains  the  same
value).  This  is  expected of  these  nodes.  They form the foundation of
the whole network, and their prime status continues to hold. In a se-
mantic sense, meaning flows from these nodes to the derivative nodes.
At the opposite end, the very poorly linked nodes in the outgoing net-
work are fitted by changing values of l (as shown in Figures 2 and 4).
Again this is  expected. In a mature and robust network, the possibil-
ity  of  semantic  variations  is  much  more  open  in  the  weakly  linked
derivative nodes, as opposed to the primordial nodes. 

For the in-degree distributions, the situation is contrariwise. Going
by  Figures  1  and  3,  the  model  fitting  can  be  achieved  properly  by
changing  the  value  of  h  significantly.  Further,  with  a  new  release  of
Debian,  h  actually  decreases,  a  fact  whose  import  is  that  the  most
richly  linked  nodes  in  the  in-degree  distribution  (which  are  also  the
most-dependent  nodes)  acquire  fewer  links  than  they  might  have,  if
the  power-law  trend  were  to  have  been  adhered  to  indefinitely.  So,
from a dynamic perspective, there is a limit up to which these depen-
dent nodes continue to be linked. 
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Taking  these  observations  together,  we  realize  that  the  FOSS  net-
work  is  not  a  static  entity.  Rather  it  is  a  dynamically  evolving  net-
work, as any standard software network is known to be [32, 33], un-
dergoing  continuous  additions  (even  deletions)  and  modifications
across several generations of Debian releases, contributed by the com-
munity of free-software developers.  So any realistic model should ac-
count for this evolutionary aspect of the network distribution, and by
now many theoretical models [34–37] have provided such insight into
the dynamic evolution of networks. It is known too that scale-free net-
works emerge through the simultaneous operation of dynamic growth
and  preferential  attachment  [34,  38].  The  limiting  features  of  such  a
scale-free  distribution  ought  also  to  come  out  naturally  through  the
long-time dynamics. 

The  top  nodes  in  the  out-degree  distribution  form  the  irreducible
nucleus of the FOSS network. These nodes are the most influential in
the network. From the perspective of a continuum model, we look at
the  frequency  distribution  of  the  nodes  in  the  network  of  outgoing
links  as  a  field  f Hx, tL  evolving continuously  through time t  with the
saturation in the number of nodes for high values of x, emerging of its
own accord from the  dynamics.  In  keeping  with  this  need,  we frame
an ansatz with a general power-law feature as 

(8)f Hx, tL !
x + l

c

a

+ jHx, tL,
in  which  jöh  as  tö¶.  This  prescription is  compatible  with  what
equation (2) indicates when m ! -1. Under this requirement, the tem-
poral  evolution  of  the  network  is  described  by  a  first-order,  linear,
nonhomogeneous equation, going as

(9)t
"f

" t
!

"f

"x
-

a

ca
Hx + lLa-1,

in which t  is  a representative time scale on which the FOSS network
evolves appreciably. Now equation (9) already has a power-law prop-
erty built in it explicitly and is expected, upon being integrated under
suitable  initial  conditions,  to  make  the  saturation  features  of  the  top
nodes appear because of nonhomogeneity. This is the exact reverse of
equation (4), which has nonhomogeneity explicitly designed in it, and
upon being integrated, leads to a power-law behavior. The general so-
lution of  equation (9)  can be  obtained by  the  method of  characteris-
tics [39], in which we need to solve the equations

(10)-
d t

t
!

d x

1
!

d f

a Hx + lLa-1 c-a
.
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The solution of the d f ê d x equation is   

(11)f -
x + l

c

a

! a,

while the solution of the d x ê d t equation is  

(12)x +
t

t
! b,

with both a and b being integration constants. The general solution is
to  be  found  under  the  condition  that  one  characteristic  solution  of
equation  (10)  is  an  arbitrary  function  of  the  other;  that  is,  a ! f HbL,
with f  having to be determined from the initial conditions [39]. So, go-
ing by the integral solutions given by equations (11) and (12), the gen-
eral solution of f Hx, tL will be   

(13)f x +
t

t
! f -

x + l

c

a

,

which,  under  the  initial  condition  that  f ! h  at  t ! 0,  will  charac-

terize the profile of the arbitrary function f  as   

(14)f HzL ! h -
z + l

c

a

.

Hence, the specific solution can be obtained from equation (13) as  

(15)f Hx, tL ! h +
x + l

c

a

-
1

c
x + l +

t

t

a

,

and  this,  under  the  condition  that  a ! -2,  will  converge  to  the  dis-
tribution given by equation (5), for tö¶. The significance of the ini-
tial  condition is  worth stressing here.  For  a  value of  x,  the  evolution
starts  at  t ! 0  with  an  initial  node  count  of  f ! h,  which,  under  all
practical circumstances, is set at h ! 1. This is to say that a node ap-
pears  in  the  network with x  number of  links,  where  previously  there
existed no node with this particular number of links. As the network
evolves, two things continue to happen: first, new nodes are added to
the  network,  and  second,  already-existing  nodes  accrete  links  in
greater numbers. The most heavily linked among the latter started as
the  primary  nodes,  and  at  t ! 0,  their  number  defines  the  minimum
number of independent packages that are absolutely necessary for the
FOSS network to evolve subsequently (for t > 0) into a robust seman-
tic  system.  From  a  semantic  perspective,  the  initial  condition  can  be
argued to have an axiomatic character,  and the mature network bur-
geons from it on later time scales. And during the evolution, the entire
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network  gets  dynamically  self-organized  in  such  a  manner  that  the
eventual  static  out-degree  distribution has  its  saturation properties  at
the highly connected end determined by what the initial field was like
at t ! 0.  

The asymptotic properties  of equation (15) can now be examined,
both  in  the  limit  of  tö0  and  in  the  limit  of  tö¶.  In  the  former
case,  the evolution of f  will  be linear in t  for a given value of  x  and
will go as 

(16)f Hx, tL > h - a
Hx + lLa-1

ca

t

t
,

in  which  growth  is  assured  only  when  a < 0.  This  linearity  of  early
growth  reflects  the  assumption  of  a  linear  growth  of  the  number  of
nodes with time [40].   

While  the  temporal  evolution  obeys  linearity  on  early  time  scales,
in the opposite limit of tö¶, the evolution shifts asymptotically to a
power-law trend going as 

(17)f Hx, tL - h -
x + l

c

a

> -
1

ca

t

t

a
.

Naturally, convergence toward a steady state, as it has been given by
the  condition  in  the  left-hand  side  of  the  foregoing  relation,  will  be
possible only when a < 0, a requirement that is satisfied by Zipf’s law
(a ! -2). Free and open-source software has been known to have its
dynamic  processes  driven  by  power  laws  [20,  21],  which  is  a  clear
sign that long memory prevails in this kind of system.   

Now from the steady-state form of the degree distribution, as it  is
given by equation (2), we can set down for m ! -1 a similar relation
for the time-dependent field f ª f Hx, tL as

(18)f Hx, tL ! h +
x + l

è

cè

a

,

where  l
è
 and cè  are  “dressed” parameters,  defined as  l

è ! ln Hx, tL  and
cè ! c z Hx, tL, respectively. The scaling form of the two functions n and
z  can  be  determined  by  equating  the  right-hand  sides  of  equa-
tions!(15) and (18). This will lead to   

(19)
x + l

è

cè

a

!
x + l

c

a

-
1

c
x + l +

t

t

a

.

For  scales  of  x p l  (typically  x t 10),  a  converging  power-series
expansion  of  increasingly  higher  orders  of  l ê x  can  be  carried  out
with the help of equation (19). The zeroth-order condition will deliver
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  p  q       
the scaling profile of z as   

(20)z Hx, tL ! 1 - 1 +
t

x t

a -1êa
.

This function bears time-translational properties, and at a given scale
of  x,  it  causes  the  degree  distribution  to  shift  across  the  x–f  plot
through  time.  However,  it  is  also  not  difficult  to  see  that  when
a ! -2,  there  is  a  convergence  toward  z ! 1  (the  steady  state  limit)
as  tö¶.  And when xö¶,  on any finite  time scale,  zö0.  This  is
why the count of the most heavily connected nodes (for which x has a
high  value)  stays  nearly  the  same  (f ! h)  at  all  times,  a  fact  that  is
borne out by the out-degree distributions in Figures 2 and 4. The satu-
ration scale of x for such behavior is given by equation (6). A related
fact  that  also  emerges  is  that  time-translation  of  the  degree  distribu-
tion  becomes  steadily  more  pronounced  as  we  move  away  from
x ~ xsat  toward  the  lower  limit  of  x ! 1  (the  least  number  of  links
that a node can possess). Consequently, as the temporal evolution pro-
gresses,  the  out-degree  distribution  assumes  a  slanted  appearance,
with  a  negative  slope  in  the  x–f  plane,  something  shown  clearly  in
Figures 2 and 4. The model fitting in these two plots indicates that the
value of c increases with time. This is how it should be, going by the
form of  the  scaling function z Hx, tL,  if  we are  careful  to  observe that
c  in  both  the  plots  is  to  be  viewed  as  cè,  to  account  for  its  time-
dependent variation.  

Information  regarding  the  time-translational  properties  of  the
poorly  connected  nodes  is  contained  in  the  scaling  function  n Hx, tL.
However, a look at the left-hand side of equation (19) reveals that n is
coupled to z, and this nonlinear coupling causes complications. Going
back to the power-series expansion in l ê x, as it can be obtained from
equation (19), we may suppose that just as the zeroth-order in the se-
ries has yielded a proper scaling form for z, the higher orders in the se-
ries  will  bring  forth  a  similar  form  for  n.  And  indeed  we  do  obtain

such a solution, going as nk ! za A1 - H1 + t ê x tLa-kE, with k being the
order of the expansion in the power series. But this result is mislead-
ing because the parameter l and the scaling function n Hx, tL are influ-
ential only when l t x, with x assuming arbitrarily small values in the
continuum model. Therefore, the correct approach here is not to take
a  series  expansion  in  l ê x,  but  rather  in  x ê l,  with  a  proper  conver-
gence of the series taking place for higher orders in x ê l.  The zeroth-
order  term  of  this  series  gives  the  scaling  form
na ! za @1 - H1 + t ê ltLaD.  The  primary  difficulty  with  this  result  is
that  the  true  functional  dependence  of  z  in  this  case  is  not  known.
This is certainly not going to be the function that is implied by equa-
tion (20), because this form of z is valid only on scales where x p l. 
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Considering  everything,  the  clear  message  derived  from  the  com-
mon pattern exhibited by the two generations of  out-degree distribu-
tions is that the value of l has a significant bearing on the number of
the  preponderant  but  sparsely  connected  nodes,  a  fact  that  is  de-
scribed by equation (7). In the continuum picture of the degree distri-
bution,  l  is  the  theoretical  lower  bound  of  the  number  of  links  that
the most weakly linked nodes may possess (which saves f from suffer-
ing  a  divergence  as  xö0,  as  equation  (5)  shows).  Through  the
evolutionary growth of the network, an increase in the value of l sug-
gests that these poorly linked nodes become incrementally relevant to
the  system  by  contributing  more  links  in  the  out-directed  network.
Now these  poorly  connected nodes  in  the  out-degree  distribution are
also  the  most  profusely  linked nodes  in  the  in-directed  network.  Fig-
ures 1 and 3 show that for these nodes the value of h  decreases with
the evolution of the FOSS network. So while these nodes become pro-
gressively  more  relevant  as  members  of  the  out-directed  network  (a
condition quantified by increasing values of l), as members of the in-
directed  network  they  become  progressively  less  dependent
(quantified  by  decreasing  values  of  h).  Analyzing  the  data  of  all  the
six generations of Debian, it is seen for the out-directed network that
the value of l remains nearly the same up to the fourth release, Etch,
but  grows noticeably  thereafter  for  the  next  two releases,  Lenny and
Squeeze. Figures 5 and 6 show, respectively, the in-degree and the out-
degree distributions of the release Squeeze. 

In  contrast,  in  the  in-directed  network,  the  value  of  l  grows
quickly  for  the  early  releases  and  then  saturates  in  the  Lenny  and
Squeeze  releases.  Remembering  that  in  the  in-directed  network  the
most  poorly  linked  nodes  are  actually  the  parent  nodes  of  the  entire
network,  we  conclude  that  even  these  nodes  become  dependent  on
other nodes to a small extent. Taken as a whole, as time increases, the
interdependency character of the entire network becomes more firmly
established, with even the relatively unimportant nodes showing a ten-
dency to contribute outwardly directed links. 

Quantitative support in favor of this claim comes from the dynam-
ics  of  the  out-directed  network.  In  this  case,  the  total  number  of
nodes Nout HtL at any given point of time t can be obtained by evaluat-
ing the integral 

(21)NoutHtL ! ‡
1

xm
fHx, tL d x.

The limits of this integral are decided by the limits on the number of
links that the nodes possess, 1 being the lower limit and xm  being the
upper  (maximum)  limit.  The  integral  in  equation  (21)  can  be  solved
by  taking  the  profile  of  f Hx, tL  given  by  equation  (15),  for  a ! -2.
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Figure 5.   On large scales of x in the network of incoming links of the latest
stable  release,  Squeeze,  the  saturation  of  the  degree  distribution  is  fitted  by
the parameter value h ! -28. When x is small, the fit is obtained for l ! 2.2.
For this plot, c > 265.

Figure 6.  The  out-degree  distribution  of  the  latest  stable  release,  Squeeze,  is
in agreement with what the dynamic model predicts. The values of l and c in-
crease, as expected, to l ! 0.45 and c > 110. The richest node in this distribu-
tion has 12 470 links.
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Noting  that  xm p 1  (typically  xm ~ 104)  for  the  out-directed  net-
work, the total number of nodes at any time can be estimated as

(22)NoutHtL > h xm +
c2

1 + l
- c2 1 + l +

t

t

-1
.

On moderate time scales, the last two terms in the right-hand side of
equation (22) are roughly equal. So the dominant contribution comes
from the  first  term (the  saturation  term),  as  a  consequence  of  which
we  can  set  down  Nout ~ xm.  This  argument  becomes  progressively
more  correct  for  large  values  of  xm,  that  is,  for  later  releases  of
Debian.

For  the  out-degree  distribution  in  the  Etch  release,  xm > 9000,
while  in  the  Lenny  release,  the  corresponding  number  is  about
10 000.  Using  these  values  from  both  the  releases  of  Debian,  the  re-
spective  count  of  Nout  can  be  made  for  the  two  successive  genera-
tions.  These  values  of  Nout  represent  the  number  of  nodes  that  con-
tribute at least one link in the out-directed network. In the case of the
Etch release, the number of software packages contributing to the out-
directed network is counted to be about 8700 (which is closely compa-
rable to the estimated value of Nout ~ xm > 9000), and in the case of
the  Lenny  release,  the  total  count  of  the  out-directed  nodes  is  about
11 000  (which  can  be  favorably  compared  once  again  to
Nout ~ xm > 10 000).  As  a  fraction  of  the  total  number  of  nodes,
these  actual  counts  indicate  that  the  number  of  nodes  in  the  out-
directed  network  increases  by  0.3%  from  the  Etch  release  to  the
Lenny  release.  This  validates  the  contention  that  with  each  passing
generation,  the  network becomes incrementally  more robust  in  terms
of out-degree contributions coming from an increasingly greater num-
ber  of  nodes.  The  values  pertaining  to  the  latest  stable  release,
Squeeze, also go along with this trend. In this case the actual count of
the out-directed nodes is about 14 000, a number that is again compa-
rable  with  the  estimate  of  Nout ~ xm > 12 000.  In  keeping  with  the
predicted  trend,  the  fraction  of  nodes  contributing  out-directed  links
in this release increases by 1.2%. We also note with curiosity that in
these  last  three  Debian  releases,  Etch,  Lenny,  and  Squeeze,  the  total
number of software packages in both the in-directed and out-directed
networks  is  roughly  twice  the  value  of  xm  in  the  out-directed  net-
work. 

The  overall  growth  of  the  network,  however,  slowly  grinds  to  a
halt  on  long  time  scales.  This  conclusion  cannot  be  missed  in  equa-
tion!(22),  which  suggests  that  the  total  number  of  nodes  increases
with time, but approaches a finite stationary value when tö¶, with
xm  remaining  finite.  This  inclination  of  the  network  to  saturate  to-
ward a finite-size end can be explained in terms of the finite semantic
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possibilities  associated with each of  the  nodes.  The extent  of  making
creative use of the existing semantic possibilities of even the most in-
tensely linked of  the top nodes is  limited.  Since most  of  the nodes in
the network depend on such top nodes, there must then be a terminal
stage in the growth of the network. Unless novel creative elements in
semantic terms are continuously added to the top nodes, the value of
xm  will  remain  constrained  within  a  certain  bound,  and  saturation
will  happen.  So  saturation  in  the  network  is  a  consequence  of  the
limit to the various ways in which original functions in the top nodes
can  be  invoked  by  the  derivative  nodes.  An  illustration  of  this  argu-
ment  is  to  be  seen  in  Figure  7,  which  plots  actual  values  taken from
all the Debian releases. This plot tracks the growth of the total num-
ber of nodes in the out-directed network. All the members of this net-
work contribute at least one out-directed link, and so meaning (the se-
mantic  context)  is  seen  to  flow  out  of  these  nodes.  Therefore,  these
nodes are the bearers of original axioms. That the growth of this en-
tire  out-directed  network  saturates  toward  a  limiting  value  for  the

Figure 7.  The  broken  dotted  curve  plots  the  growth  of  the  total  number  of
nodes in the out-directed network over six generations of Debian. The contin-
uous  curve,  following  equation  (23),  gives  the  fitting  function  of  the  data
points.  The  fit,  indicating  a  power-law  approach  toward  saturation,  agrees
well for the later releases of Debian (the third release onward). In this plot t is
a  scaled  time,  marking  the  generation  number.  The  parameter  values  are
A ! 29 000,  B ! 113 000,  and  C ! 1.4,  which  are  compatible  when  viewed
in terms of h, l, c, and xm, as they have been set in Figures 2, 4, and 6.
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later  releases  of  Debian  is  quite  obvious  from  the  trend  indicated  in
Figure 7. The data curve is fitted by a general form of equation (22),
going as 

(23)NoutHtL > A -
B

C + t
,

where  A ! h xm + c2 H1 + lL-2,  B ! c2 t,  and  C ! H1 + lL t.  The  im-
plication of the foregoing expression is that the long-time approach to-
ward the terminal stage in the growth of the network is like a power
law. From the fitting function, this looks very much true for the later
releases  of  Debian.  Now  saturation  in  the  growth  of  the  axiom-
bearing nodes  (with out-directed links)  means that  the  growth of  the
network of in-directed nodes will also saturate in tandem. The seman-
tic  flow in the  entire  network terminates  at  these  nodes,  and as  such
these “terminal” nodes are also indicators of saturation.  

5. Concluding Remarks

This work is based on the networks of direct dependencies in the com-
ponent-based  software  Debian.  A  deeper  understanding  of  depen-
dency-based semantic features can be had on introducing the notions
of strong dependencies  and package sensitivity,  which are instrumen-
tal in distinguishing transitive dependencies from conjunctive and dis-
junctive dependencies [23]. We note that direct and strong dependen-
cies  generally  tend  to  be  correlated  [23].  These  features  may  have  a
bearing  on  redundancy  in  the  operating  system  and  its  robustness
against  failure.  We  may  also  mention  in  passing  that  network  struc-
tures  in  component-based  software  are  determined  by  specific  fields,
with  “depends,”  which  is  the  basis  of  this  study,  being  just  one  of
such fields (“conflicts,” for instance, being another). A particular field
may give rise to specific features in the network, characteristic of itself
only.  

The mathematical model developed in this work makes a quantita-
tive  distinction  between  the  incoming  and  outgoing  distributions  in
the Debian GNU/Linux network.  Similar  features are known to exist
in  the  degree  distributions  of  other  scale-free  networks,  and with the
mathematical  framework  applied  here,  it  should  become  possible  to
study the saturation properties and the specific directional characteris-
tics of scale-free networks in general. To take an example, the degree
distributions  of  the  World  Wide  Web  and  Debian  appear  to  be  the
converse  of  each  other.  And  so  what  looks  like  an  in-degree  distri-
bution  for  one  is  the  out-degree  distribution  for  the  other,  and  vice
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versa  [1].  The  model  provided  here  is  general  enough  to  capture  the
specific features of the two different cases by a suitable tuning of the
parameters. 

Acknowledgments  

We thank J. K. Bhattacharjee, A. Kumar, P. Majumdar, V.  M.  Yako-
venko, and S. Zacchiroli for helpful remarks.  

References  

[1] S.  N.  Dorogovtsev  and  J.  F.  F.  Mendes,  Evolution  of  Networks:  From
Biological  Nets to the Internet and WWW,  New York: Oxford Univer-
sity Press, 2003. 

[2] M. Newman, A.-L.  Barabási,  and D. J.  Watts  (eds.),  The Structure and
Dynamics of Networks, Princeton: Princeton University Press, 2006. 

[3] A.  Barrat,  M.  Barthélemy,  and  A.  Vespignani,  Dynamical  Processes  on
Complex Networks, Cambridge: Cambridge University Press, 2008. 

[4] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks.”
arxiv.org/abs/cond-mat/0106144.

[5] S.  H.  Strogatz,  “Exploring  Complex  Networks,”  Nature,  410,  2001
pp.!268–276. doi:10.1038/35065725.

[6] R.  Albert  and  A.-L.  Barabási,  “Statistical  Mechanics  of  Complex  Net-
works,”  Reviews  of  Modern  Physics,  74(1),  2002  pp.  47–97.
doi:10.1103/RevModPhys.74.47.

[7] M.  E.  J.  Newman,  “The  Structure  and  Function  of  Complex  Net-
works,” Society for Industrial  and Applied Mathematics Review,  45(2),
2003 pp. 167–256. doi:10.1137/S003614450342480.

[8] L.  A.  N.  Amaral  and  J.  M.  Ottino,  “Complex  Networks,”  The  Euro-
pean Physical Journal B, 38(2), 2004 pp. 147–162.
doi:10.1140/epjb/e2004-00110-5.

[9] M. E. J. Newman, “Complex Systems: A Survey.”
arxiv.org/abs/1112.1440.

[10] R.  Albert,  H.  Jeong,  and  A.-L.  Barabási,  “Internet:  Diameter  of  the
World-Wide Web,” Nature, 401, 1999 pp. 130–131.
doi:10.1038/43601.

[11] A.  Chatterjee  and  B.  K.  Chakrabarti  (eds.),  Econophysics  of  Markets
and Business Networks, New York: Springer, 2007. 

[12] R. F. i Cancho, R. V. Solé, and R. Köhler, “Patterns in Syntactic Depen-
dency Networks,” Physical Review E, 69, 2004 p. 051915.
doi:10.1103/PhysRevE.69.051915.

90 R. Nair, G. Nagarjuna, and A. K. Ray

Complex Systems, 23 © 2014 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.23.1.71



[13] R.  F.  i  Cancho,  “Euclidean  Distance  between  Syntactically  Linked
Words,” Physical Review E, 70, 2004 p. 056135.
doi:10.1103/PhysRevE.70.056135.

[14] M. Steyvers and J. B. Tenenbaum, “The Large-Scale Structure of Seman-
tic  Networks:  Statistical  Analyses  and  a  Model  of  Semantic  Growth,”
Cognitive Science, 29(1), 2005 pp. 41–78.
doi:10.1207/s15516709cog2901_3.

[15] R.  F.  i  Cancho,  C.  Janssen,  and  R.  V.  Solé,  “Topology  of  Technology
Graphs:  Small  World  Patterns  in  Electronic  Circuits,”  Physical  Review
E, 64(4), 2001 p. 046119. doi:10.1103/PhysRevE.64.046119.

[16] S.  Valverde,  R.  F.  Cancho,  and  R.  V.  Solé,  “Scale-Free  Networks  from
Optimal Design,” Europhysics Letters, 60(4), 2002 p. 512.
doi:10.1209/epl/i2002-00248-2.

[17] S. Valverde and R. V. Solé, “Hierarchical Small Worlds in Software Ar-
chitecture.” arxiv.org/abs/cond-mat/0307278.

[18] D.  Challet  and  A.  Lombardoni,  “Bug  Propagation  and  Debugging
in  Asymmetric  Software  Structures,”  Physical  Review  E,  70,  2004
p. 046109. doi:10.1103/PhysRevE.70.046109.

[19] N. LaBelle and E. Wallingford, “Inter-Package Dependency Networks in
Open-Source Software.” arxiv.org/abs/cs.SE/0411096. 

[20] D. Challet and Y. L. Du, “Microscopic Model of Software Bug Dynam-
ics: Closed Source versus Open Source,” International Journal of Relia-
bility,  Quality  and  Safety  Engineering,  12(6),  2005  p.  521.
doi:10.1142/S0218539305001999.

[21] D. Challet and S. Valverde, “Fat Tails, Long Memory, Maturity and Ag-
ing in Open-Source Software Projects.” arxiv.org/abs/0802.3170. 

[22] D.  J.  Watts  and  S.  H.  Strogatz,  “Collective  Dynamics  of  ‘Small-World’
Networks,” Nature, 393, 1998 pp. 440–442. doi:10.1038/30918.

[23] P. Abate, J. Boender, R. di Cosmo, and S. Zacchiroli, “Strong Dependen-
cies between Software Components,” in 2009 3rd International Sympo-
sium  on  Empirical  Software  Engineering  and  Measurement  (ESEM
2009), Lake Buena Vista, FL, 2009 p. 89.

[24] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh, “Empirical Tests
of Zipf’s Law Mechanism in Open Source Linux Distribution,” Physical
Review Letters, 101(21), 2008 p. 218701.
doi:10.1103/PhysRevLett.101.218701.

[25] G.  K.  Zipf,  Human Behavior  and  the  Principle  of  Least  Effort:  An  In-
troduction  to  Human  Ecology,  Cambridge,  MA:  Addison-Wesley
Press, 1949. 

[26] A.-L.  Barabási  and  H.  E.  Stanley,  Fractal  Concepts  in  Surface  Growth,
New York: Press Syndicate of the University of Cambridge, 1995.

Finite-Size Effects in the Dependency Networks of FOSS 91

Complex Systems, 23 © 2014 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.23.1.71



[27] M.  E.  J.  Newman,  S.  H.  Strogatz,  and  D.  J.  Watts,  “Random  Graphs
with  Arbitrary  Degree  Distributions  and  Their  Applications,”  Physical
Review E, 64(2), 2001 p. 026118. doi:10.1103/PhysRevE.64.026118.

[28] R. Nair, G. Nagarjuna, and A. K. Ray, “Features of Complex Networks
in  a  Free-Software  Operating  System,”  Journal  of  Physics:  Conference
Series, 365(1), 2012 p. 012058. doi:10.1088/1742-6596/365/1/012058.

[29] E.  W.  Montroll,  “Social  Dynamics  and  the  Quantifying  of  Social
Forces,”  Proceedings  of  the  National  Academy  of  Sciences,  75(10),
1978 pp. 4633–4637.

[30] S.  H.  Strogatz,  Nonlinear  Dynamics  and  Chaos:  With  Applications  to
Physics,  Biology,  Chemistry,  and  Engineering,  Reading,  MA:  Addison-
Wesley Publishing, 1994. 

[31] A.  Broder,  R.  Kumar,  F.  Maghoul,  P.  Raghavan,  S.  Rajagopalan,
R.  Stata,  A.  Tomkins,  and  J.  Wiener,  “Graph  Structure  in  the  Web,”
Computer Networks, 33(1–6), 2000 pp. 309–320.
doi:10.1016/S1389-1286(00)00083-9.

[32] C. R. Myers, “Software Systems as Complex Networks: Structure, Func-
tion,  and Evolvability of  Software Collaboration Graphs,” Physical  Re-
view E, 68(4), 2003 p. 046116. doi:10.1103/PhysRevE.68.046116.

[33] A. A. Gorshenev and Yu. M. Pis’mak, “Punctuated Equilibrium in Soft-
ware Evolution,” Physical Review E, 70(6), 2004 p. 067103.
doi:10.1103/PhysRevE.70.067103.

[34] A.-L.  Barabási  and  R.  Albert,  “Emergence  of  Scaling  in  Random  Net-
works,” Science, 286, 1999 pp. 509–512.
doi:10.1126/science.286.5439.509.

[35] P.  L.  Krapivsky,  S.  Redner,  and  F.  Levyraz,  “Connectivity  of  Growing
Random  Networks,”  Physical  Review  Letters,  85(21),  2000
pp. 4629–4632. doi:10.1103/PhysRevLett.85.4629.

[36] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, “Structure of
Growing Networks with Preferential Linking,” Physical Review Letters,
85(21), 2000 pp. 4633–4636. doi:10.1103/PhysRevLett.85.4633.

[37] P. L. Krapivsky and S. Redner, “Network Growth by Copying,” Physi-
cal Review E, 71(3), 2005 p. 036118.
doi:10.1103/PhysRevE.71.036118.

[38] A.-L. Barabási, R. Albert, and H. Jeong, “Mean-Field Theory for Scale-
Free Random Networks,” Physica A: Statistical Mechanics and Its Appli-
cations, 272(1–2), 1999 pp. 173–187.
doi:10.1016/S0378-4371(99)00291-5.

[39] L.  Debnath,  Nonlinear  Partial  Differential  Equations  for  Scientists  and
Engineers, Boston: Birkhäuser, 1997. 

[40] S. Valverde and R. V. Solé, “Logarithmic Growth Dynamics in Software
Networks,” Europhysics Letters, 72(5), 2005 p. 858.
doi:10.1209/epl/i2005-10314-9.

92 R. Nair, G. Nagarjuna, and A. K. Ray

Complex Systems, 23 © 2014 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.23.1.71



<<
  /ASCII85EncodePages false
  /AllowPSXObjects false
  /AllowTransparency false
  /AlwaysEmbed [
    true
  ]
  /AntiAliasColorImages false
  /AntiAliasGrayImages false
  /AntiAliasMonoImages false
  /AutoFilterColorImages true
  /AutoFilterGrayImages true
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /ColorACSImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /ColorConversionStrategy /LeaveColorUnchanged
  /ColorImageAutoFilterStrategy /JPEG
  /ColorImageDepth -1
  /ColorImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /ColorImageDownsampleThreshold 1.50000
  /ColorImageDownsampleType /Bicubic
  /ColorImageFilter /DCTEncode
  /ColorImageMinDownsampleDepth 1
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /ColorImageResolution 300
  /ColorSettingsFile ()
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /CreateJDFFile false
  /CreateJobTicket false
  /CropColorImages false
  /CropGrayImages false
  /CropMonoImages false
  /DSCReportingLevel 0
  /DefaultRenderingIntent /Default
  /Description <<

  >>
  /DetectBlends true
  /DetectCurves 0
  /DoThumbnails false
  /DownsampleColorImages true
  /DownsampleGrayImages true
  /DownsampleMonoImages true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /EmbedOpenType false
  /EmitDSCWarnings false
  /EncodeColorImages true
  /EncodeGrayImages true
  /EncodeMonoImages true
  /EndPage -1
  /GrayACSImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /GrayImageAutoFilterStrategy /JPEG
  /GrayImageDepth -1
  /GrayImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /GrayImageDownsampleThreshold 1.50000
  /GrayImageDownsampleType /Bicubic
  /GrayImageFilter /DCTEncode
  /GrayImageMinDownsampleDepth 2
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /GrayImageResolution 300
  /ImageMemory 1048576
  /JPEG2000ColorACSImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000ColorImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000GrayACSImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000GrayImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /LockDistillerParams false
  /MaxSubsetPct 100
  /MonoImageDepth -1
  /MonoImageDict <<
    /K -1
  >>
  /MonoImageDownsampleThreshold 1.50000
  /MonoImageDownsampleType /Bicubic
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /MonoImageResolution 1200
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /NeverEmbed [
    true
  ]
  /OPM 1
  /Optimize true
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.25000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXBleedBoxToTrimBoxOffset [
    0
    0
    0
    0
  ]
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXOutputCondition ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputIntentProfile ()
  /PDFXRegistryName ()
  /PDFXSetBleedBoxToMediaBox true
  /PDFXTrapped /False
  /PDFXTrimBoxToMediaBoxOffset [
    0
    0
    0
    0
  ]
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /ParseICCProfilesInComments true
  /PassThroughJPEGImages true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




